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Abstract 

This paper presents a Levels-of-Approximation (LoA) unified mechanical model for the shear 

strength of slender and non-slender reinforced and prestressed concrete beams, with 

rectangular, T- or I-shaped sections. It applies to members reinforced with steel or fiber-

reinforced polymer (FRP) bars, or fiber-reinforced concrete (FRC). Derived from the Multi-

Action Shear Model (MASM), the model integrates the key shear transfer actions, including 

shear carried by the compression chord, residual tensile stresses across the critical crack, 

dowel action of longitudinal reinforcement and contributions from stirrups, if present.  

Structured within the LoA framework, the model offers increasing complexity and accuracy 

for various structural design and assessment scenarios, from preliminary design (LoA 0) to 

detailed assessment (LoA III). Its adaptability is demonstrated through different extensions, 

including fatigue for RC beams without stirrups. The model is validated using 2,714 test 

results from 14 experimental databases, showing consistent predictions with reduced scatter, 

especially at higher LoAs. 

This unified mechanical model provides a robust tool for both the design and assessment of 

structural concrete elements, offering a systematic approach to integrate advanced mechanical 

understanding with practical engineering needs. 

mailto:antoni.cladera@uib.es


Resumen 

Este artículo presenta un modelo mecánico unificado, estructurado bajo la metodología de 

Niveles de Aproximación (LoA, por sus siglas en inglés), para estimar la resistencia a cortante 

de vigas esbeltas y no esbeltas de hormigón armado y pretensado, con secciones transversales 

rectangulares, en T o en I. El modelo es válido para elementos reforzados con barras de acero 

o de polímeros reforzados con fibra (FRP), así como para hormigones reforzados con fibras 

(FRC). Derivado del Multi-Action Shear Model (MASM), el modelo integra los principales 

mecanismos de transferencia del esfuerzo cortante, incluyendo la contribución de la cabeza 

comprimida, las tensiones residuales de tracción a través de la fisura crítica, el efecto pasador 

de la armadura longitudinal y la contribución de la armadura transversal, si la hubiera.  

El modelo, estructurado en el marco de los Niveles de Aproximación, ofrece una complejidad 

y precisión crecientes para distintos escenarios de proyecto y evaluación estructural, desde el 

diseño preliminar (LoA 0) hasta la evaluación detallada (LoA III). Su adaptabilidad se 

demuestra mediante diversas extensiones, incluyendo el análisis a fatiga en vigas de hormigón 

armado sin estribos. La validación se ha realizado con 2.714 resultados experimentales 

procedentes de 14 bases de datos, mostrando predicciones consistentes y con baja dispersión, 

especialmente en los niveles más elevados de aproximación. 

Este modelo mecánico unificado constituye una herramienta robusta tanto para el proyecto 

como para la evaluación de elementos estructurales de hormigón, proporcionando un enfoque 

sistemático que integra un conocimiento mecánico avanzado con las necesidades prácticas de 

la ingeniería. 

 

 

  



1. Introduction 

The long-standing debate on the shear strength of reinforced concrete (RC) members dates 

back to the earliest research in this field. As early as 1907, Mörsch identified three 

fundamental shear transfer actions or resisting mechanisms [1]: 1) shear stresses in the 

compression zone, 2) dowel action in the longitudinal reinforcement, and 3) tensile forces in 

the web reinforcement, if present. Faber introduced the arch effect as another crucial 

mechanism in a series of superb papers published in 1916 [2]. However, it was not until 1966 

that Fenwick and Paulay [3,4], through ad-hoc experiments, systematically analyzed the 

principal mechanisms of shear resistance in RC beams and were the first to quantify their 

contributions experimentally. Their pioneering work also incorporated aggregate interlock 

across cracks and marked the first estimation of shear stress attributable to this mechanism. 

These findings became a foundational step for further research and were incorporated into the 

ACI-ASCE recommendations in 1973 [5].  

Subsequent studies focused on quantifying the contributions of each shear transfer mechanism, 

particularly aggregate interlock [6–8]. Prof. Fritz Leonhardt, in his famous keynote address, 

highlighted that ultimate shear strength is influenced by more than 20 parameters [9]. Since 

then, researchers have developed increasingly sophisticated models to account for many of 

these factors, while practical design codes require simplifications. As Prof. Paul E. Regan 

observed in 1993 [10], simplifying the problem often involves neglecting secondary factors, 

but what is secondary in one case may be primary in another. An example of this balance is 

the ACI-318-19 design formula for shear strength [11], which is derived from six models 

based on different assumptions [12–17]. Of these, two prioritize aggregate interlock as the 

dominant mechanism [14,15], while the remaining four focus on shear stresses transferred by 

the compression zone. 

In recent years, Campana et al. [18] proposed a novel methodology for evaluating shear 

transfer mechanisms during testing, combining detailed crack pattern analysis and crack 

kinematics. This approach allowed researchers to track the evolution of shear-transfer actions 

during different loading phases. Cavagnis et al. [19,20] and Huber et al. [21,22] enhanced this 

methodology by incorporating Digital Image Correlation techniques and advanced models of 



aggregate interlock. Cavagnis et al. demonstrated that the relative contributions of shear-

transfer actions vary with beam geometry and loading conditions. For slender beams (a/d > 

2.5), aggregate interlock predominates, whereas for short beams (a/d < 2.5), direct strut-and-

tie mechanisms govern the behavior. This transition occurs at the vertex of the so-called Kani 

valley [23], where the dominant shear mechanism shifts with the slenderness ratio. 

Recently, Montoya et al. [24] used the Digital Image Correlation (DIC) technique to measure 

the sliding and opening of cracks in six RC beams without transversal reinforcement. This 

enabled using the Walraven model to compute the stresses along cracks, and estimated a 

reduced contribution of the aggregate interlock across the shear crack in the web, until 

approximately 90%–98% of the total shear capacity according to six tests on RC beams 

without stirrups (Fig. 1b). At this loading level, a second, more horizontal branch of the 

critical shear crack forms (Fig. 1c) inside the compression chord, accompanied by significant 

sliding resulting in higher levels of shear stresses. These observations highlight a 

complementary relationship, rather than a contradiction, between models based on shear 

transferred through the compression chord [25–27] and those prioritizing aggregate interlock 

[28,29], including the branch of the crack in the compression chord. 

 

Figure 1. Crack pattern evolution in a RC beam, without stirrups, failing on shear. 

 

A different methodology was employed by Bairán et al. [30], using optimized strut-and-tie 

models with concrete ties to understand shear transfer actions in RC beams without stirrups. 

This model considers stress transfer capacity across cracks by accounting for the inclination 

between the stress field and crack kinematics (opening and sliding). An experimental case 

study demonstrated that different shear-resisting actions dominate in different regions of the 

beam. For instance, aggregate interlock effectively transfers stresses in zones with near-

vertical cracks. However, in areas with smaller bending moments and more inclined cracks, 

the stress components in the crack plane primarily induce direct tension with limited shear in 



the crack plane. Consequently, aggregate interlock becomes insufficient to carry the full shear 

force, and failure is governed by the compression zone’s capacity. 

In this context, two research groups—from the Universitat Politècnica de Catalunya and the 

Universitat de les Illes Balears—led by Prof. Antonio Marí, sequentially developed a 

mechanically derived shear strength model between 2014 and 2016. The initial development 

of the model began with efforts to explain the shear strength in ULS of beam-and-block floors 

[31] and beams reinforced with fiber-reinforced polymer (FRP) bars [32,33]. In both cases, it 

was observed that shear transfer in the compression zone was the dominant mechanism: in the 

first case, due to the prominence of the compression zone relative to the web width, and in the 

second case, due to the large crack widths in the web caused by the low modulus of elasticity 

of the FRP bars. 

Building on these specific cases and integrating different transfer actions, as will be 

summarized in the following section, the general shear-flexural strength mechanical model for 

the design and assessment of reinforced concrete beams was formulated. This was initially 

applied to beams with rectangular cross-sections [34], then extended to T- and I-shaped beams 

[35], and finally to prestressed concrete beams [36]. Collectively, these contributions formed 

what we termed the Multi-Action Shear Model (MASM). The particular case of beams 

subjected to distributed loads was addressed in [37].  

As the MASM presented closed-form equations for each shear transfer action, the model was 

simplified into the Compression Chord Capacity Model (CCCM), with the main premise that 

the shear transferred across the uncracked compression chord was the principal transfer action 

[38]. This simplified model also served as the base for the version developed for the ACI 318-

19 update [16]. 

These mechanical models were further extended to address specific cases, including the shear 

strength of non-slender reinforced concrete beams [39], steel fiber reinforced concrete (SFRC) 

beams without stirrups [40], and the shear fatigue strength of RC members without stirrups 

[41]. Other applications included corrosion-damaged RC beams [42] and their long-time shear 

strength prediction [43,44], and prestressed concrete beams with FRP tendons [45]. The model 

was even adapted for punching shear of slabs [46,47], among other cases [48–50] not 



discussed here for the sake of conciseness. Moreover, a detailed discussion on open questions 

on shear behavior of structural concrete and the answers provided by mechanical models was 

recently published by Prof. Marí [51]. 

The 21 references cited earlier represent the culmination of approximately 12 years of 

dedicated and dynamic research. While these contributions were not always developed in a 

strictly sequential or comprehensive manner, each played a vital role in advancing the overall 

understanding of the subject. To bring coherence and clarity, this paper brings together those 

valuable insights into a unified mechanical model, structured in a logical progression—from 

the most general formulations to the more commonly encountered specific applications. 

Additionally, the work embraces the Level-of-Approximation (LoA) framework introduced in 

the Model Code 2010 [52], reinforcing a consistent and practical approach to model 

development. 

The LoA framework ensures that the refinement of a design model corresponds to the required 

level of detail in the calculation process—whether for preliminary design, detailed design, or 

structural assessment—and considers the importance of the structural element in question [53]. 

For preliminary design, quick estimations are prioritized, requiring minimal calculation effort. 

In contrast, the strength assessment of existing structures often requires sophisticated models 

for accurate capacity evaluation, as decisions regarding reinforcement, rehabilitation, or 

demolition can carry substantial financial, social, and environmental implications. 

Accordingly, the complexity and effort involved in the design process increase with the LoA.  

To maintain consistency across all LoAs, a unified physical model serves as the foundation, 

with conservative simplifications applied as the design complexity decreases. In this paper, the 

most refined model, corresponding to LoA III, is based on the Multi-Action Shear Model 

(MASM). From this formulation, the Compression Chord Capacity Model (CCCM) is 

transparently derived and proposed as LoA II. Further simplifications, tailored primarily for 

the design of new structures, constitute LoA I. Additionally, a preliminary design approach, 

referred to as LoA 0, is also discussed. This framework ensures coherent outcomes across 

different LoAs, with naturally more conservative results associated with lower levels of 

approximation, suitable for situations where data may be incomplete or imprecise. 



This paper will present the LoAs in the logical sequence of their derivation (LoA III → II → 

I/0) although the intended use would be in the reverse order (LoA 0/I → II → III). 

The key contribution of this work is the integration of the MASM and CCCM within a unified 

Level-of-Approximation framework. To the authors’ knowledge, this is probably the first 

unified model capable of addressing a broad range of cases involving the shear strength of 

slender and short reinforced and prestressed concrete beams, with or without stirrups, 

considering rectangular, T- or I-cross sections, with steel reinforcement, FRP reinforcement, 

or fiber-reinforced concrete. The extensions presented in this paper are primarily based on 

works previously published by the authors in separate contributions, which are here 

systematically compiled and adapted to ensure full internal consistency and practical 

applicability within the LoA framework, particularly at LoA II. This reorganization allows the 

different extensions to be applied in a homogeneous manner, providing a balanced 

compromise between mechanical accuracy and simplicity. In addition, in the specific case of 

beams internally reinforced with FRP bars—one of the earliest applications that motivated the 

development of the underlying mechanical model—the simplified formulation proposed at 

LoA II constitutes a new contribution, offering a more straightforward and fully integrated 

approach within the unified framework, now accounting for the successive developments of 

the general model. 

 

2. Brief introduction to the derivation of the Multi-Action Shear Model 

The primary assumption of the Multi-Action Shear Model (MASM), supported by the 

empirical observations of many researchers [25,54,55], is that once the second branch of the 

critical crack develops, the load capacity does not significantly increase, as the softening of 

concrete in the compression zone begins. 

Linking the onset of shear failure to the propagation of the second branch of the critical crack 

simplifies the problem significantly. This approach enables the formulation of a failure 

criterion based on concrete stresses in the compression chord, using Kupfer’s biaxial failure 

envelope [56]. This criterion relies on the compressive and tensile strengths of concrete, 

parameters that exhibit less variability compared to those required in kinematic failure models. 



In essence, the MASM assumes that the uncracked concrete in flexure experiences a 

multiaxial state of principal stresses (σ1, σ2), induced by the combined effects of shear force 

(τ), longitudinal bending stresses (σx), and vertical stresses (σy) from local effects (Figure 2), 

which collectively enhance the shear strength of the uncracked concrete. Building upon this 

assumption and applying classic mechanics principles, the MASM derives explicit equations 

(detailed in Section 3) for four shear transfer actions: shear transferred by the compression 

zone, shear transferred across the critical crack due to residual tensile stresses, shear 

transferred by dowel action of the longitudinal reinforcement, and shear transferred by the 

stirrups, if they exist. These actions are interdependent. For instance, the confinement stresses 

in the uncracked concrete, induced by stirrups, are accounted for when evaluating the shear 

contribution from the uncracked concrete, or the dowel effect is considered negligible if there 

are not stirrups. A comprehensive derivation of the MASM can be found in [29].  

 

Figure 2. Considered distributions of stresses at the un-cracked concrete chord. 

 

3. Level of Approximation III: the Multi-Action Shear Model (MASM) 

Table 1, presenting Eqs. (1)-(13) and Figure 3, shows all the equations and factors needed to 

compute the shear strength of a reinforced or prestressed concrete member, with or without 

stirrups, with rectangular, T- or I-shaped cross-section. The key aspects and distinct features of 

this model will be highlighted in the following subsections. Refer to the Notations section for 

the definition of the different parameters involved.  

 

 

 



Table 1. Summary of the equation for the LoA III: MASM 

Main expressions 

Shear strength 𝑉𝑉𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑐𝑐𝑐𝑐 + 𝑉𝑉𝑠𝑠𝑠𝑠 ≤ 𝑉𝑉𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚  (1) 

Concrete contribution 𝑉𝑉𝑐𝑐𝑐𝑐 = (𝑣𝑣𝑐𝑐 + 𝑣𝑣𝑤𝑤 + 𝑣𝑣𝑙𝑙)
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
⋅ 𝑏𝑏 ⋅ 𝑑𝑑 (2) 

Shear reinforcement 
contribution 

𝑉𝑉𝑠𝑠𝑠𝑠 = (𝑑𝑑𝑠𝑠 − 𝑥𝑥) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝐴𝐴𝑠𝑠𝑠𝑠
𝑠𝑠
𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦     (3a) 

𝑣𝑣𝑠𝑠 = (𝑑𝑑𝑠𝑠 − 𝑥𝑥) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝐴𝐴𝑠𝑠𝑠𝑠
𝑠𝑠

𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦
𝑓𝑓𝑐𝑐𝑐𝑐𝑏𝑏·𝑑𝑑

 (3b) 

Maximum shear strength  
(strut crushing) 𝑉𝑉𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼𝑐𝑐𝑐𝑐𝑏𝑏𝑤𝑤𝑧𝑧𝜈𝜈1𝑓𝑓𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
1+𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃

 (4) 

Contributing 
component Dimensionless expressions 

Compression chord 𝑣𝑣𝑐𝑐 = 𝜁𝜁 ��0.70 + 0.18𝐾𝐾𝑇𝑇 + �0.20 + 0.50 𝑏𝑏
𝑏𝑏𝑤𝑤
� 𝑣𝑣𝑠𝑠�

𝑥𝑥
𝑑𝑑

+ 0.02𝐾𝐾𝑇𝑇�
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒
𝑏𝑏

𝐾𝐾𝑝𝑝  (5) 

Cracked concrete web 𝑣𝑣𝑤𝑤 = 167 𝑓𝑓𝑐𝑐𝑐𝑐
𝐸𝐸𝑐𝑐𝑐𝑐

𝑏𝑏𝑤𝑤
𝑏𝑏
�1 + 2⋅𝐺𝐺𝑓𝑓⋅𝐸𝐸𝑐𝑐𝑐𝑐

𝑓𝑓𝑐𝑐𝑐𝑐
2 ⋅𝑑𝑑0

� (6) 

Longitudinal 
reinforcement  
(dowel effect) 

𝑖𝑖𝑖𝑖 𝑣𝑣𝑠𝑠 > 0 → 𝑣𝑣𝑙𝑙 = 0.23 𝛼𝛼𝑒𝑒·𝜌𝜌𝑙𝑙,𝑏𝑏
1−𝑥𝑥/𝑑𝑑

 (7a) 

𝑖𝑖𝑖𝑖 𝑣𝑣𝑠𝑠 = 0 → 𝑣𝑣𝑙𝑙 = 0 (7b) 
Factors Expressions 

Relative neutral axis 
depth 

𝑥𝑥
𝑑𝑑

= 𝑥𝑥0
𝑑𝑑

= 𝛼𝛼𝑒𝑒𝜌𝜌𝑙𝑙,𝑏𝑏 �−1 + �1 + 2
𝛼𝛼𝑒𝑒𝜌𝜌𝑙𝑙,𝑏𝑏

� (8a) 

𝑁𝑁𝐸𝐸𝐸𝐸 > 0  𝑜𝑜𝑜𝑜 𝑃𝑃 →   𝑥𝑥
𝑑𝑑

= 𝑥𝑥0
𝑑𝑑

+ ∆𝑥𝑥 𝑑𝑑⁄  ≤ ℎ
𝑑𝑑

  (8b)
  
                                   ∆𝑥𝑥 𝑑𝑑⁄ = �ℎ

𝑑𝑑
− 𝑥𝑥0

𝑑𝑑
� �𝑑𝑑

ℎ
� 𝜎𝜎𝑐𝑐𝑐𝑐
𝜎𝜎𝑐𝑐𝑐𝑐+𝑓𝑓𝑐𝑐𝑐𝑐

 (8c) 

Effective flange width 
𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ ℎ𝑓𝑓  →  𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑏𝑏𝑣𝑣 = 𝑏𝑏𝑤𝑤 + 2ℎ𝑓𝑓 ≤ 𝑏𝑏 (9a) 

𝑖𝑖𝑖𝑖 𝑥𝑥 > ℎ𝑓𝑓  →  𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑏𝑏𝑤𝑤 + (𝑏𝑏𝑣𝑣 − 𝑏𝑏𝑤𝑤) �ℎ𝑓𝑓
𝑥𝑥
�
3/2

  (9b) 

Critical crack inclination 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 = 0.85𝑑𝑑𝑠𝑠
(𝑑𝑑𝑠𝑠−𝑥𝑥)

≤ 2.5 (10) 

Size and slenderness 
effect 

𝜁𝜁 = 2

�1+ 𝑑𝑑0
200

�𝑑𝑑
𝑎𝑎
�
0.2

   (11) 

Parameter related to Mcr 
in T cross-section 𝐾𝐾𝑇𝑇 = 0.1 + 0.9 𝑏𝑏𝑤𝑤

𝑏𝑏
+ 2.5 ℎ𝑓𝑓,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

ℎ
�𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑏𝑏𝑤𝑤

𝑏𝑏
�  (12) 

Parameter related to Mcr 

in prestressed members 
𝐾𝐾𝑝𝑝 = 1 + 0.3 𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐 𝛿𝛿𝑝𝑝 𝑦𝑦𝑡𝑡

𝑓𝑓𝑐𝑐𝑐𝑐𝑏𝑏𝑑𝑑2
  (13) 

 
Figure 3. Graphical summary of the LoA III (MASM) with the definition of the basic parameters. 

 



3.1 Relative neutral axis depth, x/d 

The ratio of the neutral axis depth to the effective depth, x/d, is the key dimensionless 

parameter governing shear strength in the proposed model. For RC members, this parameter is 

determined by Eq. (8a), while for PC or RC members subjected to compressive axial loads, it 

is given by Eqs. (8b) and (8c). 

As previously discussed and illustrated in Fig. 1, the shear critical crack (SCC) evolves from 

an initial flexural crack and develops in two distinct stages. This two-phase behavior has also 

been observed by other researchers during tests on notched specimens specifically designed to 

investigate mixed-mode crack propagation in reinforced concrete (see Figs. 4a and 4b) [54]. 

From Fig. 4, it becomes evident that internal forces may redistribute between stages 0-A and 

A-B of the load-displacement curve.  

 

 

Figure 4. Qualitative scheme of crack propagation: a) crack trajectory [54]; b) load-

displacement curve [54]; c) critical crack in MASM and simplified models; d) studied plane in 

shear friction models vs. the critical crack in MASM. 

 

The MASM and its simplified models (Fig. 4c) focus on the crack stage corresponding to 

Point A in Fig. 4a, representing the onset of critical crack propagation. In contrast, models 



based on aggregate interlock or shear friction are typically concerned with the fully developed 

crack (Fig. 4d), where shear friction stresses are related to flexural strains, assessed at the level 

of the longitudinal reinforcement or at a specified depth in the web. 

For quick estimations and to grasp the order of magnitude, typical x/d values as a function of 

the tensile reinforcement ratio, ρl,b, are x/d ≈ 0.20 for lightly RC beams, x/d ≈ 0.25 for 

conventionally RC beams, or x/d ⪆ 0.35 for heavily RC beams.  

For PC members, Eqs. (8b) and (8c), derived in [36], apply. Notably, these formulas are 

straightforward and applicable to both prestressed members and members subjected to 

compressive loads. The increase in the neutral axis depth depends on the ratio 𝜎𝜎𝑐𝑐𝑐𝑐
𝜎𝜎𝑐𝑐𝑐𝑐+𝑓𝑓𝑐𝑐𝑐𝑐

, rather 

than solely on σcp.  

The MASM (LoA III) has not been validated for members under tensile loads. However, the 

CCCM (LoA II) has been validated in such cases, as will be detailed in Section 4. For these 

scenarios, it is necessary to account for the concomitant bending moment, Mu, in the design 

sections [38].  

 

3.2 Size and slenderness effect 

The brittle nature of failure that occurs when the second branch of the critical crack propagates 

demands considering the size effect, which depends on the dimensions of the concrete region 

subjected to compressive and tensile stresses. To account for this, a combined size and 

slenderness factor is defined in Eq. (11). This factor integrates the size effect term proposed by 

the ACI Committee 446 [57] (first term in the equation) with a slenderness-dependent term, 

based on the shear span-to depth ratio, a/d, derived from empirical studies using genetic 

programming [58,59]. These studies demonstrated that the term d/a0.21, simplified to d/a0.2, 

accurately predicts the influence of slenderness. For accurate calculations in continuous beams 

or beams with distributed loads, it is recommended to refer to the definition of the shear span, 

a. 

This integration represents a significant advancement, as it unifies the MASM and CCCM 

formulations while grounding the size effect treatment in a robust theoretical framework. In 



the original MASM formulation, an empirical factor proposed by other authors was adopted 

[25]. The updated approach is theoretically consistent, as the failure in the MASM is fully 

coherent with the failure explained by the fracture mechanics-based models [17,54,55].  

 

3.3 Effective compression flange width 

The influence of compression flanges on shear transfer mechanisms was thoroughly analyzed 

during the derivation of the MASM for T- and I-shaped beams [35]. However, to make the 

model more practical for everyday engineering applications, these effects were simplified into 

more compact expressions. In the MASM, the contribution of the compression flanges to shear 

strength is accounted for through an effective flange width, defined by Eqs. (9a) and (9b). This 

effective width depends on the section geometry and on the neutral axis depth. For further 

details, refer to the figure included in Table 1. 

It should be noted that for rectangular beams, the effective flange width corresponds to the 

section width (b = bv,eff = bw). For L-shaped sections with a compression flange, the term 2hf of 

Eq. (9a) is replaced by hf, which represents the thickness of the compression flange. 

 

3.4 Critical crack inclination 

The inclination of the critical crack is a key parameter in evaluating shear strength, as it 

determines where the critical crack intersects the compression zone and affects the 

contribution of shear reinforcement, which depends on the number of stirrups intersecting the 

first branch of the critical crack. Based on experimental observations reported by the authors 

in [35], the horizontal projection of the first branch of the critical flexural-shear crack is 

assumed to be 0.85ds (see Fig. 4c). This assumption corresponds to the crack inclination 

defined in Eq. (10). 

Crack inclination is influenced by both the longitudinal and transverse reinforcement ratios, ρl 

and ρw, as these factors affect the strain distribution. However, longitudinal reinforcement has 

been found to have a more significant impact on crack inclination, as observed by other 

researchers [29,32]. For this reason, the MASM simplifies the analysis by focusing on the 



longitudinal reinforcement through its relationship with the neutral axis depth. This approach 

ensures the model remains straightforward and non-iterative, making it suitable for both 

design and assessment purposes. 

As the longitudinal reinforcement ratio increases, the mean inclination angle of the critical 

crack decreases. This is consistent with the fact that for the same shear strain, the longitudinal 

tensile strain, εx, is lower when the longitudinal reinforcement ratio increases. For simplicity, 

the model assumes that the inclination angle of the critical crack is equal to the angle of the 

struts (θ), when verifying the maximum shear strength according to Eq. (4). 

 

3.5 Position of the critical section and the critical point inside the compression 

chord 

As the applied load increases, flexural cracks progressively develop with increasing bending 

moments. The critical crack is assumed to be the one closest to the zero bending moment point 

(see Fig. 1), initiating at the location where the bending moment diagram at failure reaches the 

cracking moment of the cross-section. The critical section, where equilibrium equations were 

set in the derivation of the model, is located at the point where this critical crack intersects the 

neutral axis depth (see Fig. 5). 

Based on these considerations, and on the vertical crack horizonal projection defined in 

Section 3.4, the distance between the zero bending moment point and the initiation of the 

critical crack is scr = Mcr/Vu, and the critical section is positioned at su = scr + 0.85ds. Typically, 

this distance slightly exceeds ds, which is why, for design purposes, ds is used as the location 

to verify the shear strength of RC members. 



 

Figure 5. Location of critical section: a) Simply supported region and cantilever under 

concentrated loads; b) Simply supported region and cantilever under distributed loads.  

Note: C.S.: critical section; M-C.R: multi-compressed region. 

In PC members, the higher cracking moment shifts the critical crack farther from the zero 

bending moment point compared to RC members. To address this, it is proposed to verify the 

shear strength at a section located at a distance ds(1 + 0.4σcp/fcm). The increased cracking 

moment in prestressed sections is incorporated into the mechanical model through the strength 

factor Kp (Eq. 13 in Table 1), while the influence of the compression or tensile flanges on the 

cracking loads is accounted for by factor KT (Eq. 12). For RC beams without axial loads and 

rectangular cross-sections, KP = KT = 1.  

The critical point within the compression chord, where failure is expected to initiate, 

corresponds to the location of maximum damage. Its position depends on the distributions of 

normal and shear stresses along the uncracked concrete chord. While this specific point is not 

directly used in the application of the MASM, it is of theoretical interest. Studies conducted by 

the authors [32] indicate that, assuming linear and parabolic distributions for the normal and 

shear stresses, respectively, the critical point is located at a distance of approximately 

y  ≈ 0.425x from the neutral axis. 

 

 

 



4. Level of Approximation II: the Compression Chord Capacity Model (CCCM) 

The derivation of the CCCM equations (Table 2, Eqs. (14)-(21) and Figure 6) from MASM is 

detailed in Appendix A. To simplify the application of LoA II, the complete set of equations is 

provided, though many parameters (Eqs. 18a, 18b, 18c, 19a, 19b, 20 and 21) remain as defined 

for MASM in Table 1. 

For RC beams, Eq. (18a) introduces a simplified expression for the relative neutral axis depth 

(term on the right), which shows good accuracy as demonstrated in [38]. A simplification for 

the expression of maximum shear strength is proposed in Eq. (17), with its derivation detailed 

in Annex A3. 

The reduction of neutral axis depth for RC beams under tensile axial loads is addressed by Eq. 

(18d). While this approach simplifies the problem, the model still performs well, as shown in 

Section 7 and [60]. 

 

 

 

 

  



Table 2. Summary of the equations for the LoA II: CCCM. 
Main expressions 

Shear strength 𝑉𝑉𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑐𝑐𝑐𝑐 + 𝑉𝑉𝑠𝑠𝑠𝑠 ≤ 𝑉𝑉𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚  (14) 

Concrete contribution 
𝑉𝑉𝑐𝑐𝑐𝑐 = 𝜁𝜁 𝑥𝑥

𝑑𝑑
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 ≮ 𝑉𝑉𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 (15a) 

𝑉𝑉𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 = 0.18 �𝜁𝜁 + 100
𝑑𝑑0
� 𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑤𝑤𝑑𝑑 (15b) 

Shear reinforcement 
contribution 𝑉𝑉𝑠𝑠𝑠𝑠 = 1.4(𝑑𝑑𝑠𝑠 − 𝑥𝑥) cot 𝜃𝜃 𝐴𝐴𝑠𝑠𝑠𝑠

𝑠𝑠
𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦  (16) 

Maximum shear strength  
(strut crushing) 𝑉𝑉𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼𝑐𝑐𝑐𝑐𝑏𝑏𝑤𝑤𝑧𝑧𝜈𝜈1𝑓𝑓𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
1+𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃

≈ 0.225𝑓𝑓𝑐𝑐𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 (17) 

Factors Expressions 

Relative neutral axis depth 

𝑥𝑥
𝑑𝑑

= 𝑥𝑥0
𝑑𝑑

= 𝛼𝛼𝑒𝑒𝜌𝜌𝑙𝑙,𝑏𝑏 �−1 + �1 + 2
𝛼𝛼𝑒𝑒𝜌𝜌𝑙𝑙,𝑏𝑏

� ≈ 0.75�𝛼𝛼𝑒𝑒𝜌𝜌𝑙𝑙,𝑏𝑏�
1/3  (18a) 

𝑁𝑁𝐸𝐸𝐸𝐸 ≠ 0  𝑜𝑜𝑜𝑜 𝑃𝑃 →   0 ≤ 𝑥𝑥
𝑑𝑑

= 𝑥𝑥0
𝑑𝑑

+ ∆𝑥𝑥 𝑑𝑑⁄  ≤ ℎ
𝑑𝑑

 (18b) 

𝑁𝑁𝐸𝐸𝐸𝐸 > 0  𝑜𝑜𝑜𝑜 𝑃𝑃 →   ∆𝑥𝑥 𝑑𝑑⁄ = �ℎ
𝑑𝑑
− 𝑥𝑥0

𝑑𝑑
� �𝑑𝑑

ℎ
� 𝜎𝜎𝑐𝑐𝑐𝑐
𝜎𝜎𝑐𝑐𝑐𝑐+𝑓𝑓𝑐𝑐𝑐𝑐

>0  (18c) 

𝑁𝑁𝐸𝐸𝐸𝐸 < 0           →  ∆𝑥𝑥 𝑑𝑑⁄ = 0.1 𝑁𝑁𝐸𝐸𝐸𝐸
𝑀𝑀𝐸𝐸𝐸𝐸

𝑑𝑑𝑠𝑠
𝑑𝑑

< 0 (18d) 

Effective flange width 
𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ ℎ𝑓𝑓 →  𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑏𝑏𝑣𝑣 = 𝑏𝑏𝑤𝑤 + 2ℎ𝑓𝑓 ≤ 𝑏𝑏 (19a) 

𝑖𝑖𝑖𝑖 𝑥𝑥 > ℎ𝑓𝑓 →  𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒 ≈ 𝑏𝑏𝑤𝑤 + (𝑏𝑏𝑣𝑣 − 𝑏𝑏𝑤𝑤) �ℎ𝑓𝑓
𝑥𝑥
�
3/2

 (19b) 

Critical crack inclination cot𝜃𝜃 = 0.85𝑑𝑑𝑠𝑠
𝑑𝑑𝑠𝑠−𝑥𝑥

≤ 2.5 (20) 

Size and slenderness effect 𝜁𝜁 = 2

�1+ 𝑑𝑑0
200

�𝑑𝑑
𝑎𝑎
�
0.2

 (21) 

 
Figure 6. Graphical summary of the LoA II (CCCM) with the definition of the basic parameters. 
 

5. Level of Approximation I and 0 

In cases where lower computational effort is sufficient, LoA I provides a simplified 

alternative. Derived from LoA II (CCCM) as detailed in Appendix B, this approach assumes 

all cross-sections are rectangular, disregarding the beneficial effects of compression flanges. 

The model, outlined in Table 3 (Eqs. (22)-(28) and Figure 7), is applicable to RC and PC 

elements with or without stirrups but does not account for tensile axial forces. 



In the most complex case—a PC beam with an I-cross section and stirrups—LoA I requires 

only 7 equations and 12 variables, compared to the 18 equations and 21 variables used in LoA 

III (MASM, see Table 1). LoA II (CCCM) offers an intermediate level of complexity. 

Eq. (24) defines the lower-bound shear strength for members with low longitudinal 

reinforcement, making it independent of the longitudinal reinforcement ratio. Due to its 

simplicity, this equation is designated as LoA 0. Note that within the brackets of Eq. (24), two 

size effects are considered: the compression chord size effect (𝜁𝜁′, left term) and the size effect 

due to the residual tensile stress transferred through the critical shear crack (100/d0, right 

term). 

Table 3. Summary of the Level of Approximation I procedure. 

Main expressions 

Shear strength 𝑉𝑉𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑐𝑐𝑐𝑐 + 𝑉𝑉𝑠𝑠𝑠𝑠 ≤ 𝑉𝑉𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚 (22) 

Concrete contribution 
𝑉𝑉𝑐𝑐𝑐𝑐 = 1.35𝜁𝜁′𝜌𝜌𝑙𝑙,𝑤𝑤1/3 𝑓𝑓𝑐𝑐𝑐𝑐

𝛾𝛾𝑣𝑣
𝑏𝑏𝑤𝑤𝑑𝑑�1 + ∆𝑥𝑥 𝑑𝑑⁄ � ≮ 𝑉𝑉𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚  (23) 

𝑉𝑉𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 = 0.18 �𝜁𝜁′ + 100
𝑑𝑑0
� 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐

𝛾𝛾𝑣𝑣
𝑏𝑏𝑤𝑤𝑑𝑑 (24) 

Shear reinforcement 
contribution 𝑉𝑉𝑠𝑠𝑠𝑠 = 1.2 𝐴𝐴𝑠𝑠𝑠𝑠

𝑠𝑠
𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝑠𝑠 (25) 

Maximum shear strength 
(strut crushing) 

𝑉𝑉𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚 = 0.225𝑓𝑓𝑐𝑐𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 (26) 

Factors Expressions 

Prestressing effect 𝑁𝑁𝐸𝐸𝐸𝐸 > 0  𝑜𝑜𝑜𝑜 𝑃𝑃 →   ∆𝑥𝑥 𝑑𝑑⁄ = �ℎ
𝑑𝑑
− 𝑥𝑥0

𝑑𝑑
� �𝑑𝑑

ℎ
� 𝜎𝜎𝑐𝑐𝑐𝑐
𝜎𝜎𝑐𝑐𝑐𝑐+𝑓𝑓𝑐𝑐𝑐𝑐

>0 (27) 

Size effect 𝜁𝜁′ = 1.5

�1+𝑑𝑑0
200

     (28) 

 
Figure 7. Graphical summary of the LoA I with the definition of the basic parameters. 

 

6. Uncracked regions in bending 

In highly prestressed, simply supported concrete beams—such as certain T- or I-shaped beams 

with minimal or no shear reinforcement—flexural cracking near the supports is often absent, 

even under significant loading. In these regions, the thin beam web experiences high shear 



stresses from the applied shear force, combined with compressive normal stresses induced by 

prestressing. This creates a biaxial stress state of compression and tension. When the principal 

stresses at the most critical point in the web exceed Kupfer’s biaxial failure envelope [56], a 

diagonal crack forms across the entire beam height. Experimental evidence suggests that the 

cracking load in such cases is nearly identical to the ultimate load [61–63]. 

As derived in [36], the shear strength under these conditions is given by Eq. (29): 

 𝑉𝑉𝑅𝑅𝑅𝑅 = 𝐼𝐼𝑐𝑐𝑏𝑏𝑤𝑤
𝑆𝑆𝑐𝑐

0.8𝑓𝑓𝑐𝑐𝑐𝑐�1 + 𝛼𝛼𝑙𝑙
𝜎𝜎𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐𝑐𝑐

               (29) 

The factor 0.8 in Eq. (29) accounts for the interaction between compressive and tensile 

stresses, as derived using Kupfer’s failure envelope [36]. It is worth noting that some design 

codes omit this factor, which we consider a slightly unconservative approach. 

For beams with transverse reinforcement, shear strength is calculated assuming the presence of 

flexural cracks. In such cases, the previously described levels of approximation (LoAs) should 

be used. 

 

7. Validation of the LoA 0, I, II and III with experimental databases 

The predictions of the defined Levels of Approximation (LoA) are validated against the ACI-

DAfStb evaluation databases developed by ACI Subcommittee 445-D. These include RC 

beams without stirrups [64], RC beams with stirrups [65], PC beams without stirrups [66] and 

PC beams with stirrups [66]. Table 4 summarizes the primary statistics of the experimental-to-

predicted strength ratios (Vtest/Vpred). 

For all comparisons in this paper, average concrete compressive strength and tensile steel 

strength values were used, with partial safety factors set to 1. For the concrete tensile strength, 

fct, and modulus of elasticity, Ec, the average values given in the Eurocode 2 of second 

generation [67] have been used (see Notations section for the exact definition). 

Generally, as the LoA increases, both the mean Vtest/Vpred ratio and its coefficient of variation 

(CoV) improve. LoA III demonstrates consistently low CoV across all databases, including the 

subsets of T-beams. In contrast, LoA I, which does not account for compression flanges, 

exhibits higher safety margins for T-beam subsets. Detailed comparisons with code-based 



methods are outside the scope of this paper but are available in [36,38]. Note that for PC 

beams without stirrups, each LoA is combined, depending on the cracking state for the 

predicted maximum load, with the shear strength for regions uncracked in bending. 

Table 4. Comparison of tests results vs. predictions for different LoAs. 

Database (or sub-database) # LoA 0 (Vcu,min) LoA I LoA II LoA III 
Mean CoV Mean CoV Mean CoV Mean CoV 

RC beams w/o stirrups  784 1.84 29.5% 1.27 22.9% 1.16 18.0% 1.03 17.8% 
RC only T-beams w/o stirrups 64 2.19 35.6% 1.40 34.2% 1.09 22.2% 1.14 20.4% 
RC beams with stirrups 170 1.53 22.4% 1.23 16.7% 1.14 14.2% 1.09 15.5% 
RC only T-beams with stirrups 57 1.52 27.3% 1.34 15.1% 1.20 12.4% 1.21 12.7% 
PC beams w/o stirrups 214 - - 1.84 30.6% 1.21 22.8% 1.10 22.2% 
PC only T-beams w/o stirrups 112 - - 1.92 33.5% 1.21 21.8% 1.15 21.0% 
PC beams with stirrups 
(115 with T-cross section) 117 - - 1.48 23.2% 1.20 20.9% 1.10 14.4% 

 

Figure 8 illustrates the correlation between experimental results, Vtest, and predictions for the 

four LoAs. The blue line represents perfect correlation, and dashed black lines indicate data 

trends, with R² values included. As observed, accuracy noticeably improves with higher LoA. 

Figure 9 shows the correlation between LoA II predictions and experimental results as a 

function of effective depth, d, for the four ACI-DAfStb databases. No significant trend against 

d is observed, confirming the appropriateness of the size effect factor.  

It is worth noting that while the partial safety factor for concrete shear contribution is defined 

per Eurocode 2 (2nd generation) [67], this factor depends on the specific performance of the 

design model, as well as the uncertainties of its variables, so the direct interpolation to 

different models is, in general, not possible. Therefore, further reliability analyses are needed 

to calibrate the safety format of the presented LoAs for design purposes. As previously 

discussed, different shear mechanical models should be viewed as complementary rather than 

contradictory. For instance, for members with moderate or high amounts of shear 

reinforcement, variable-angle truss models based on plasticity offer a quick and practical 

design approach, particularly when torsion is present. For such members, a practical approach 

is to determine the maximum shear strength using either the models presented in this paper or 

variable-angle truss models based on plasticity, such as those included in the Eurocodes 

[67,68]. 



 

 
Fig. 8. Correlation between predictions and experimental results for RC beams w/o stirrups. 

 

 
Figure 9. Correlation between LoA II and experimental results as a function of d. 



 

The LoA II (CCCM) incorporates the effect of axial tensile forces via Eq. (18d). To evaluate 

its predictive accuracy, two databases were analyzed. The first, from [69], includes 34 

rectangular beams (a/d= 1.5–5.6) and 14 T-beams (a/d= 2.0). The second, from [70] contains 

23 beams, some subjected to high axial tensile loads. Notably, Eurocode 2 predicts zero shear 

strength for 12 tests in this latter set, as noted in [60]. For the CCCM computations, the 

extension for non-slender beams presented in Section 8.1 has also been considered for beams 

with a/d < 2.5. 

Figure 10 illustrates the Vtest/Vpred correlations. For the first database (black and white circles), 

LoA II yields a mean ratio of 1.24 with a CoV of 21.1%. For the second (red circles), the mean 

ratio is 1.32 with a CoV of 13.8%. While these results are promising, it is crucial to note that 

under strong axial loads, Vcu,min (Eq. (15b)) governs the prediction, as x/d may reduce to zero, 

rendering Vcu (Eq. (15a)) negligible. In such cases, the strong catenary effect could have had a 

significant impact on the shear strength, but this effect is outside the scope of this compact 

model. Careful application is advised in these scenarios.  

 

Figure 10. Correlation between LoA II predictions and experimental results as a function of 

non-dimensional tensile stress for the two databases. 

  



8. Model extensions 

The following subsections present the key extensions developed by the authors. Each 

extension is summarized, followed by a brief comparison with the relevant databases for each 

case. For simplicity and computational efficiency, most extensions are based on LoA II, the 

Compression Chord Capacity Model. 

 

8.1 Non-Slender Beams with and without stirrups 

The shear strength of non-slender reinforced concrete beams, where a/d ≤ 2.5, is enhanced due 

to arching action, as Kani [71] already showed in 1964. Existing shear design methods for 

such elements, including the strut-and-tie method (STM), show deviations from test results. 

The LoA II (CCCM), originally developed for slender beams, has been extended to non-

slender beams. This extension incorporates the effects of non-planar strain distribution, the 

multi-compression stress state near the applied load, and the pre-determined position and 

inclination of the critical shear crack. The main equations for the extension are presented in 

Table 5 and Figure 11, with the full derivation provided in [39]. For any parameter or factor 

not listed in Table 5, the corresponding value from the CCCM (Table 2) should be used. This 

includes the relative neutral axis depth, x/d, for slender-beams. 

The concrete contribution to shear strength is given by Eq. (30), which uses the shear strength 

for slender beams (dependent on x/d), multiplied by Kad, a factor that accounts for the ratio 

between shear strengths in non-slender and slender beams (see Eq. 35). 

To compute the contribution of the reinforcement to the shear strength, the relative neutral axis 

depth for non-slender beams must be determined. To account for the increase in neutral axis 

depth, a parabolic variation of x is assumed between a/d =2.5 (x1=x, B-region) and a/d=0 

(x1=d), as seen in Eq. (36).  

In non-slender beams, the critical shear crack develops straight and connecting the inner faces 

of the load to the support pads [72], with an inclination given by the shear-span-to-depth ratio, 

a/d, as seen in Eq. (37).  



The web reinforcement contribution (Eq. 32) includes both vertical (stirrups) and horizontal 

reinforcement along the web. It is important to note that, in general, these reinforcements may 

not yield, and their stress contributions are considered using Eqs. (38a) and (38b). 

Table 5. Summary of the equations extended for non-slender beams. 

Main expressions 

Shear strength 𝑉𝑉𝑅𝑅 = 𝑉𝑉𝑐𝑐𝑐𝑐 + 𝑉𝑉𝑠𝑠𝑠𝑠 ≤ 𝑉𝑉𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚 (30) 

Concrete contribution 𝑉𝑉𝑐𝑐𝑐𝑐 = 𝜁𝜁
𝑥𝑥
𝑑𝑑
𝐾𝐾𝑎𝑎𝑎𝑎

𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 (31) 

Web reinforcement contribution 𝑉𝑉𝑠𝑠𝑠𝑠 = 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 (32) 

Vertical web reinforcement 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑥𝑥

(𝑑𝑑 − 𝑥𝑥1) cot𝜃𝜃 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (33) 

Horizontal web reinforcement 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 =  0.5 
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠
 𝑠𝑠𝑦𝑦   

(𝑑𝑑 − 𝑥𝑥1) tan𝜃𝜃 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (34) 

Factors Expressions  
Factor considering strength increase 
in non-slender beams 𝐾𝐾𝑎𝑎𝑎𝑎 = 1 + (2.5 −

𝑎𝑎
𝑑𝑑

)2 (35) 

Relative neutral axis depth  
𝑥𝑥1
𝑑𝑑

=
𝑥𝑥
𝑑𝑑

+ (1 −
𝑥𝑥
𝑑𝑑

)(1 − 0.4
𝑎𝑎
𝑑𝑑

)2 ≤ 1 (36) 

Critical crack inclination 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 =
𝑎𝑎
𝑑𝑑
≥ 0.5 (37) 

Stress at vertical and horizontal web 
reinforcement 

𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑓𝑓𝑐𝑐𝑐𝑐  𝐾𝐾𝑎𝑎𝑎𝑎
𝜌𝜌𝑙𝑙

𝑥𝑥1
𝑑𝑑
𝑐𝑐𝑐𝑐𝑐𝑐3𝜃𝜃 ≤ 𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦  

𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑓𝑓𝑐𝑐𝑐𝑐  𝐾𝐾𝑎𝑎𝑎𝑎
𝜌𝜌𝑙𝑙

𝑥𝑥1
𝑑𝑑
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦 

(38a) 
 
(38b) 

 
Figure 11. Graphical summary of the extension for non-slender beams. 

 

To experimentally validate the proposed model for non-slender beams, the derived equations 

were used to predict the results of 486 tests. The datasets used for verification include: 222 

tests on beams without web reinforcement [73], 178 tests on beams with vertical web 

reinforcement [74], and 86 tests on beams with horizontal and vertical web reinforcement [75]. 



The results are summarized in Table 6. Although some scatter is observed for RC beams 

without stirrups, the performance compares favorably to code procedures, as detailed in [39]. 

Table 6. Comparison of tests results vs. predictions for non-slender beams. 

Database  # LoA II 
Mean CoV 

RC beams w/o stirrups 222 1.47 29.5% 
RC beams with vertical stirrups 178 1.19 19.4% 
RC beams with vertical stirrups and 
longitudinal web reinforcement 86 1.37 22.1% 

 

One fundamental contribution of the extension for non-slender beams is that it presents 

smooth continuity with LoA II for slender beams. This continuity is illustrated in Figure 12, 

which depicts results from Kani’s renowned series of tests [23]. In these tests, key beam 

properties s—such as width (154 mm), depth (610 mm), effective depth (539 mm), 

longitudinal reinforcement (ρ = 2.77 %, fy =371.9 MPa), concrete and maximum aggregate 

size —were held relatively constant, while the shear-span-to-depth ratio, a/d, varied between 1 

and 9. Because the beams were heavily reinforced longitudinally, flexural failures at midspan 

did not occur until a/d reached approximately 9 (beam 68 in Figure 12). The predictions for 

slender beams by LoA II (CCCM) are shown in red, while those for non-slender beams 

(a/d < 2.5) in blue. The figure highlights the satisfactory predictions and the consistency 

across both slender and non-slender beam cases. 

 

Figure 12. Predicted and observed strengths for Kani’s RC beams [23]. 



 

8.2 Beams internally reinforced with FRP bars 

For RC members reinforced internally with FRP bars—either longitudinal reinforcement alone 

or in combination with transverse FRP bars—crack widths tend to be larger than in beams 

reinforced with conventional steel bars [76]. This is due to the lower modulus of elasticity of 

FRP, which reduces aggregate interlock and increases the importance of shear transfer through 

the uncracked concrete chord. Notably, the development of MASM/CCCM models originated 

from this specific case [32,33]. 

For coherence with our other works, in this paper we propose using LoA II, i.e., the 

Compression Chord Capacity Model (Table 2), to also address this scenario. The modular 

ratio, αe, should be computed considering the modulus of elasticity of the FRP bars. 

Additionally, note that Eq. (15b), which defines Vc,min  is not applicable for RC beams 

reinforced internally with non-prestressed FRP bars. This equation assumed a significant 

contribution from shear transfer across the critical crack, vw, which is less relevant in this 

context due to the material properties of FRP. 

The contribution of the transversal FRP reinforcement, 𝑉𝑉𝑓𝑓𝑓𝑓, is obtained using Eq. (16) but 

replacing the term fywd by σt, as defined in Eq. (39). This value accounts for two effects: 1) the 

tensile stress in FRP stirrups failing in the bent zone is assumed to be 45% of the ultimate 

strength of the straight portion of the bar, which corresponds to a mean value of the strength of 

the bent portion of the bar according to JSCE-97 [77] and ACI440.1R-15 [78] considering 

different ratios of the bent radius with respect to the bar diameter; and 2) σt represents the 

average stress of all stirrups crossing the critical crack, approximated as half of the stress in 

the most highly stressed stirrup. 

 𝜎𝜎𝑡𝑡 = 0.225 · 𝑓𝑓𝑡𝑡𝑡𝑡               (39) 

 

 

 



Table 7. Comparison of tests results vs. predictions for beams with only FRP rebars.  

Database (or sub-database) # LoA II 
Mean CoV 

RC beams w/o stirrups  144 1.32 17.0% 
RC beams with FRP stirrups  112 1.37 24.3% 
PC beams with FRP tendons  
(with and w/o FRP stirrups) 55 1.13 25.8% 

 

The LoA II model has been also extended for PC beams with FRP prestressing tendons, with 

and without FRP shear reinforcement [45]. The modifications described above for RC beams 

with FRP bars are applicable for this case, except that Vc,min  (Eq. 15b) is applicable in the case 

of PC beams with FRP prestressing tendons, as the prestressing action enhances the shear 

transfer across the critical crack. An additional particularity of beams with FRP tendons is 

that, as evidenced by experimental tests [79], they can potentially fail due to excessive slip of 

the tendon at the critical crack (shear-bond failure), owing to bond characteristics that are in 

many cases inferior to those of steel tendons. This type of failure will occur if the available 

bond length between the critical shear crack and the free end of the beam (𝑙𝑙𝑎𝑎𝑎𝑎) is lower than 

the length required to develop the tensile force of the FRP tendon at the critical crack (𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟). 

Bond failure initiation will reduce the prestressing force and, as a result, the shear strength. 

This will also displace the position of the critical shear crack closer to the support. When  

𝑙𝑙𝑎𝑎𝑎𝑎  < 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟, an iterative procedure is needed to calculate the reduced value of the prestressing 

force P that will satisfy 𝑙𝑙𝑎𝑎𝑎𝑎 = 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 at the shear-bond failure. The available length 𝑙𝑙𝑎𝑎𝑎𝑎  is the 

sum of the beam offset measured from the center of the support (e) and the position of the 

critical crack (𝑠𝑠𝑐𝑐𝑐𝑐 = 𝑀𝑀𝑐𝑐𝑐𝑐
𝑉𝑉𝑅𝑅

), while 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 is obtained by enforcing equilibrium along the bonded 

length and at the critical shear crack section [45]: 

 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐹𝐹𝑝𝑝·

𝑢𝑢· 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚
               (40) 

 𝐹𝐹𝑝𝑝 = 𝑀𝑀𝑐𝑐𝑐𝑐+0.85𝑉𝑉𝑐𝑐𝑐𝑐𝑑𝑑+0.2125𝑉𝑉𝑓𝑓𝑓𝑓𝑑𝑑
𝑧𝑧

               (41) 

where u is the nominal perimeter of the tendon, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚  is the bond strength of the tendon, and 𝐹𝐹𝑝𝑝 

is the tensile force of the tendon at the critical crack.  



A database of 55 tests has been used to assess the accuracy of the model extension for PC 

beams with FRP prestressing tendons. Most of the tests are on slender beams, but some non-

slender elements (a/d<2.5) are also included in the database. Among the non-slender beams, 

there are beams without shear reinforcement which fail in shear in the absence of flexural 

cracking, due to the prestressing action. The correction factor for non-slender beams 𝐾𝐾𝑎𝑎𝑎𝑎  

described in Eq. (35) was derived for the CCCM, and it is specific for beams cracked in 

flexure. An analogous correction factor 𝐾𝐾𝑎𝑎𝑎𝑎,𝑢𝑢 accounting for non-slender effects is proposed to 

modify the shear strength of uncracked beams 𝑉𝑉𝑅𝑅𝑅𝑅 obtained with Eq. (29). The term 𝐾𝐾𝑎𝑎𝑎𝑎,𝑢𝑢 was 

derived in [45] based on an idealization of the arch and beam actions in non-slender uncracked 

beams: 

 𝐾𝐾𝑎𝑎𝑎𝑎,𝑢𝑢 = 1 + 2 �1 − 0.4 𝑎𝑎
𝑑𝑑
� ≥ 1               (42) 

The results of the model estimations for PC beams with FRP reinforcement are summarized in 

Table 6. As shown, the scatter of the results for PC beams is slightly higher than that for RC 

beams, consistent with trends observed for steel reinforcement. Notably, the model extension 

accounting for potential tendon slip is capable of predicting three out of the five shear-bond 

failures reported in the tests by [79], with the mean experimental-to-predicted strength ratio of 

1.05 for these five tests and only one unsafe prediction (ratio < 1). 

 

8.3 Steel Fiber Reinforced Concrete (SFRC) slender and non-slender beams 

without stirrups 

The extension of the proposed model to slender and non-slender SFRC beams [40] was 

developed in collaboration with researchers from the University of Messina (Italy). The 

incorporation of steel fibers into concrete mixtures enhances shear behavior by delaying crack 

formation and improving the post-cracking tensile response. These enhanced mechanical 

properties significantly increase the shear strength of RC beams, as supported by numerous 

experimental studies [80–82].  



The contribution of steel fibers was integrated into the equilibrium equations of the Multi-

Action Shear Model (MASM). The residual tensile stresses of fiber reinforced concrete were 

addressed through a simplified formulation, which allowed the model to account for an 

improved compression chord contribution, direct shear transfer through the fiber-bridging 

effect along the critical shear crack, and enhanced dowel action provided by the fibers. 

Although these effects were initially modeled at the MASM level, the final expressions were 

compactly reformulated in [40], resulting in a practical LoA II procedure. The main equations 

for this extension are summarized in Table 8 and Figure 13, offering a straightforward 

approach for designers while maintaining accuracy in predicting the shear strength of SFRC 

beams, both for slender and non-slender beams.  

For non-slender SFRC beams, the Kad factor in Eq. (43), given by Eq. (35), adjusts the shear 

strength to account for arching action. Additionally, the concrete contribution is expressed as 

proportional to the relative neutral axis depth of an equivalent beam made with conventional 

concrete (Eq. (42)). 

 

Table 8. Summary of the LoA II for beams with Steel Fiber Reinforced Concrete without stirrups. 

Main expressions 

Concrete contribution 𝑉𝑉𝑐𝑐𝑐𝑐 = �𝜁𝜁 𝑥𝑥
𝑑𝑑
𝐾𝐾𝑎𝑎𝑎𝑎 �0.84 − 0.10 𝜎𝜎𝑡𝑡𝑡𝑡

𝑓𝑓𝑐𝑐𝑐𝑐
� + 0.08 + 1.10 𝜎𝜎𝑡𝑡𝑡𝑡

𝑓𝑓𝑐𝑐𝑐𝑐
� 𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 (43) 

Maximum shear strength  
(strut crushing) 𝑉𝑉𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼𝑐𝑐𝑐𝑐𝑏𝑏𝑤𝑤𝑧𝑧𝜈𝜈1𝑓𝑓𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
1+𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃

≈ 0.225𝑓𝑓𝑐𝑐𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 (44) 

Factors Expressions 

Relative neutral axis depth 𝑥𝑥
𝑑𝑑

= 𝑥𝑥0
𝑑𝑑

= 𝛼𝛼𝑒𝑒𝜌𝜌𝑙𝑙,𝑏𝑏 �−1 + �1 + 2
𝛼𝛼𝑒𝑒𝜌𝜌𝑙𝑙,𝑏𝑏

� ≈ 0.75�𝛼𝛼𝑒𝑒𝜌𝜌𝑙𝑙,𝑏𝑏�
1/3

  (45) 

Non-dimensional average 
residual tensile stress 

𝜎𝜎𝑡𝑡𝑡𝑡
𝑓𝑓𝑐𝑐𝑐𝑐

= 2𝜂𝜂0𝜂𝜂1𝐹𝐹𝜏𝜏 ≤ 1 (46) 

 
Figure 13. Graphical summary of the extension for SFRC beams without stirrups. 



The non-dimensional average residual tensile stress of fibrous concrete in tension, 𝜎𝜎𝑡𝑡𝑡𝑡, is 

derived from the constitutive law proposed by Lim et al. [83] and is summarized in Eq. (46). 

Detailed definitions of the involved parameters are provided in the Notations section, while 

further derivations and explanations can be found in [40]. 

To validate this model, a database compiled by Lantsoght [80,84] was utilized. The structural 

parameters in the database vary over a wide range; however, the mechanical characterization 

of SFRC was not reported. Nevertheless, when experimental results for the post-cracking 

tensile stress of SFRC are available, they are often obtained using different experimental 

protocols, making homogenization of the data challenging [80]. Practical values of the fiber 

volume fraction (Vf) are used (0.5–1.5%), which result in workable mixes and serve the 

purpose of partially replacing conventional steel reinforcement. 

Table 9 summarizes the correlation between experimental and predicted shear strengths for the 

entire database and specific subsets. The correlations are satisfactory, and they can be 

compared with those of different code procedures detailed in [40].  

Table 9. Comparison of tests results vs. Lantsoght database [80,84]. 

Database or subset # LoA II 
Mean CoV 

All beams 488 1.17 23.8% 
Only beams failing in shear according to the 
model (flexural check) 

324 1.18 24.7% 

Failing in shear with a/d ≥ 2.5 223 1.15 25.6% 
Failing in shear with a/d < 2.5 101 1.24 22.5% 

 

8.4 RC beams without stirrups subjected to fatigue loads 

Shear fatigue failures in reinforced concrete elements without shear reinforcement can govern 

the design of structures subjected to a high number of load cycles, such as wind towers, offshore 

structures, bridge decks, precast slabs for railways tracks, and similar applications. 

The study of shear fatigue behavior in RC elements without shear reinforcement has a long 

history, and the associated failure modes are well understood. In 1958, Chang and Kesler [85,86] 

classified these failure modes into two main groups: the first involves fatigue failure of the 

longitudinal reinforcement under tension, while the second occurs when the compression zone 



at the top of the diagonal (shear) crack becomes too small to resist the applied load, due to 

combined compression and shear stresses. 

The MASM/CCCM models define failure using Kupfer’s envelope, which considers a 

combination of compressive and tensile stresses, although tensile stresses primarily govern. As 

such, the concrete contribution to shear resistance is consistently expressed as a function of the 

concrete tensile strength in all proposed models (see Eqs. (2), (15), (23), (31), and (43)). This 

was the foundational assumption for extending the CCCM model (LoA II) to RC beams without 

stirrups subjected to fatigue loads [41]. 

Different approaches were employed to account for the reduction of the shear strength under 

fatigue loading. In the first one, the Model Code 2010 [87] expression for the degradation of 

concrete tensile strength due to the number of load cycles, N, was used. This relationship is 

expressed as shown in Eq. (47): 

𝜎𝜎𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓𝑐𝑐𝑐𝑐 �1 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁
12

�  (47) 

An alternative approach, based on Fernández-Ruiz et al. [88], applied Fracture Mechanics 

principles for quasi-brittle materials. This model considers the ratio of maximum to reference 

shear strength, Vmax/Vref, as a function of the load cycle ratio, R = Vmin/Vmax, and the number of 

load cycles, N, as expressed in Eq. (48): 

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟

= 𝜂𝜂 1

𝑅𝑅+𝑁𝑁
1
𝑚𝑚(1−𝑅𝑅)

≮ 0.5 (48) 

In this equation, m is an empirically derived coefficient equal to 17, and the threshold of 0.5 

also refer to the average test response. The authors [88] recognized that these values could be 

adapted, if necessary, to respect a target safety level. The term 𝜂𝜂 is a multiplying factor of 

static strength due to the loading rate, considered equal to 1 in [41] and in this paper, balancing 

two considerations: the implicit value of 0.9 suggested by Eurocode 2 [68] to reflect long-term 

effects on compressive strength, and the value of 1.1 proposed by Fernández-Ruiz et al. [88] to 

account for the increased concrete compressive strength observed in tests conducted at a 



loading rate of 1 Hz compared to failure times of approximately 1 hour in standard beam tests. 

Further details on this topic can be found in [41]. 

For facilitating the comparison with tests results, Eq. (48) can be reformulated in terms of 

Vmin/Vref (see Eq. 49):  

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟

= 𝜂𝜂𝑁𝑁−1/𝑚𝑚 + 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟

�1 −𝑁𝑁−1/𝑚𝑚� ≮ 0.5  (49) 

A database of fatigue tests on shear-critical beams, comprising 87 tests, was used to validate 

both approaches. This database, originally developed in [89], was later expanded and 

published in [88]. The primary results are summarized in Table 10.  

The second method, which accounts for the load cycle ratio, R, provides slightly better and 

more consistent results across the entire range of log N values analysed (see Figure 14). 

Nevertheless, the differences between the two methods are minimal. Further empirical 

comparisons, presented in terms of Goodman diagrams, are available in [41]. 

Table 10. Comparison of tests results vs. fatigue tests results.  

Method # LoA II 
Mean CoV 

LoA II with Eq (47) 87 1.15 14.6% 
LoA II with Eqs. (48-49)  87 1.19 13.3% 

 

 

Figure 14. Correlation between predictions and experimental results for the two approaches 

considered for fatigue loads. 



 

9. Conclusions 

A unified mechanical model for the shear strength of slender and non-slender reinforced and 

prestressed concrete beams has been developed, applicable to beams with rectangular, T-, or I-

shaped sections. Some distinct features of the presented model are: 

• The model, based on the Multi-Action Shear Model (MASM), effectively integrates 

shear transfer actions such as compression chord contribution, residual tensile stresses 

across the critical crack, dowel action, and transversal reinforcement effects (if 

present). 

• The Levels-of-Approximation (LoA) framework enables the application of the model 

in a wide range of structural design and assessment scenarios, with increasing 

complexity from LoA 0 (preliminary design) to LoA III (detailed assessment). 

Specifically, LoA III is based on the MASM, and LoA II on the Compression Chord 

Capacity Model (CCCM). All LoAs provide continuous models for members with or 

without shear reinforcement. 

• As highlighted in the introductory section of this paper, different mechanical 

approaches are valid for addressing the shear failure problem, and various models 

should be viewed as complementary rather than contradictory. For instance, for 

members with moderate or high amounts of shear reinforcement, variable-angle truss 

models based on plasticity offer a quick and practical design approach, particularly 

when torsion is present. 

• The extension of LoA II (CCCM) to cover specific cases, such as the shear strength of 

non-slender beams, RC and PC beams reinforced with fiber reinforced polymers 

(FRP) bars, steel fiber reinforced concrete (SFRC) members, and fatigue loads for RC 

beams without stirrups, has been also presented.  

• Validation of the model using 2,714 experimental tests from 14 databases has shown 

its accuracy and versatility, with improved prediction consistency and reduced scatter 

at higher LoAs. 



This work contributes a robust tool for the design and assessment of structural concrete 

elements, offering a systematic approach that combines advanced mechanics with engineering 

practice. Looking ahead, future work will focus on conducting a comprehensive reliability 

analysis to assess the sensitivity and robustness of the model under varying conditions, 

particularly considering uncertainties in material properties, geometry, and loading. Such an 

analysis would be important for calibrating the models to the levels recommended by current 

standards and determining the most appropriate safety format, whether through partial safety 

factors or a global factor. Further research could also explore the application of the model to 

more complex geometries or hybrid materials, such as combinations of steel, FRP, and SFRC. 

Additionally, integrating the model into advanced structural design software could greatly 

enhance its usability in practical engineering scenarios. 

 

Acknowledgements 

This paper is dedicated to Prof. Antonio Marí, the leading force behind our 12 years of 

research on shear strength and the scientific father of the Multi-Action Shear Model. His 

guidance, wisdom, and vision have been an inspiration to all of us, and we owe him the 

deepest gratitude as our master, mentor and friend throughout these years. Additionally, we 

extend this dedication to Prof. Hugo Corres, whose insightful discussions and valuable 

contributions to the topic of shear strength have greatly enriched our work. 

We would also like to acknowledge the financial support provided by grants TED2021-

130272B-C21 / TED2021-130272B-C22 funded by MICIU/AEI/10.13039/501100011033 and 

the European Union Next Generation/PRTR, as well as grants PID2021-123701OB-C21 / 

PID2021-123701OB-C22 funded also by MICIU/AEI/10.13039/501100011033 and by 

ERDF/EU. 

 

Notations 

a shear span, equal to MEd,max/VEd,max, where MEd,max and VEd,max are the maximum absolute 

values of the internal forces in the region between the maximum bending moment and 

the zero bending moment in which the considered section is located. This is equivalent 



to the distance from the support to the resultant of the loads producing shear at that 

support. Design values for uniformly distributed load, a=0.25L (simple supported); 

a=0.5L (cantilever); a=0.2L (sagging moment regions in continuous beams); a=0.15L 

(hogging moment regions in continuous members) 

b cross-section width. For T/I-sections, flexural effective compression flange width 

btens tensile flange width 

bv,eff  effective width for shear strength calculation 

bw web width for T/I/L beams; for rectangular beams bw = b 

d effective depth, 𝑑𝑑 = 𝐴𝐴𝑠𝑠𝑑𝑑𝑠𝑠+𝐴𝐴𝑝𝑝𝑑𝑑𝑝𝑝
𝐴𝐴𝑠𝑠+𝐴𝐴𝑝𝑝

 

d0 minimum effective depth for size effect factor, d0 = d ≥ 100 mm 

df fiber diameter 

dmax maximum aggregate size 

ds  distance from maximum compressed concrete fiber to the centroid of mild steel tensile 

reinforcement. For elements with only prestressed reinforcement, ds = dp 

dp distance from maximum compressed concrete fiber to the centroid of prestressing 

tendons placed at the tension zone 

fcd design compressive strength of concrete 

fck characteristic compressive strength of concrete (fck ≤ 100 MPa) 

fcm mean compressive strength of concrete 

fct tensile strength of concrete, as per second generation of Eurocode 2 in this paper: 

𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 =  0.3𝑓𝑓𝑐𝑐𝑐𝑐
2/3 if fck ≤ 50 MPa, and 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 =  1.1𝑓𝑓𝑐𝑐𝑐𝑐

1/3 if fck > 50 MPa 

ftu ultimate strength of FRP transverse reinforcement 

fywd  design yield strength of shear reinforcement 

h overall cross-section depth 

hf compression flange height. For haunched T/I/L beams, flange height + half the haunch 

hf,tens tensile flange height. In T, I or L beams with haunches, hf,tens can be considered the 

flange height plus half the haunch 



lav available bond length of prestressing tendon between critical shear crack and free end of 

the beam 

lc critical fiber length, 𝑙𝑙𝑐𝑐 = 𝜎𝜎𝑠𝑠𝑠𝑠𝑑𝑑𝑓𝑓
2𝜏𝜏𝑓𝑓

 

lreq bond length required to develop the tensile force of prestressing tendon at the critical 
crack 

s  stirrups spacing 

u nominal perimeter of FRP tendon. 

x neutral axis depth assuming zero concrete tensile strength 

x0 neutral axis depth for RC or PC members assuming P = 0 

yt distance from the concrete section centroid to the most tensioned fiber 

z inner lever arm, approximate value z ≈ 0.9d may normally be used 

Ac concrete cross-sectional area 

Ap prestressing steel (tensile zone) cross-sectional area 

As mild steel reinforcement (tensile zone) cross-sectional area 

Asw  shear reinforcement cross-sectional area 

Ecm secant modulus of elasticity of concrete, 𝐸𝐸𝑐𝑐𝑐𝑐 = 𝑘𝑘𝐸𝐸𝑓𝑓𝑐𝑐𝑐𝑐
1/3; for concrete with quartzite 

aggregates kE = 9500 (value assumed in this paper) 

Es elastic modulus of mild reinforcement (200 GPa) 

Ep elastic modulus of prestressing steel (195 GPa, if unspecified) 

Fp tensile force of FRP tendon at critical crack. 

Fτ fiber factor, 𝐹𝐹𝜏𝜏 = 𝛽𝛽𝜏𝜏𝑉𝑉𝑓𝑓
𝑙𝑙𝑓𝑓
𝑑𝑑𝑓𝑓

 

Gf concrete fracture energy, 𝐺𝐺𝑓𝑓 = 0.028𝑓𝑓𝑐𝑐𝑐𝑐0.18𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
0.32  

Ic  second moment of area 

Kad factor that accounts for ratio between shear strengths of cracked non-slender and slender 

beams 

Kad,u factor that accounts for ratio between shear strengths of uncracked non-slender and 

slender beams  

Kp strength factor for axial load (including prestressing) and bending moment interaction 



KT strength factor for T/I-sections relative to rectangular beams 

Lf fiber length 

MEd design bending moment (positive) 

NEd design axial/prestressing force (compression positive) 

P prestressing tendon force after losses 

Sc  first moment of area above the centroid 

Vcu  concrete contribution to the shear strength 

Vf volumetric percentage of fibers 

Vfu  shear FRP reinforcement contribution to the shear strength 

Vsu  shear reinforcement contribution to the shear strength 

VEd  design shear force in the section 

VRd  design shear resistance of the member 

VRd,max maximum design shear resistance limited by strut crushing 

α angle between shear reinforcement and beam axis perpendicular to the shear force 

αcw coefficient for stress in the struts: 𝛼𝛼𝑐𝑐𝑐𝑐 = 1 for non-prestressed structures; 𝛼𝛼𝑐𝑐𝑐𝑐 = 1 +

𝜎𝜎𝑐𝑐𝑐𝑐/𝑓𝑓𝑐𝑐𝑐𝑐for  0 ≤ 𝜎𝜎𝑐𝑐𝑐𝑐 ≤ 0.25𝑓𝑓𝑐𝑐𝑐𝑐; 𝛼𝛼𝑐𝑐𝑐𝑐 = 1.25 for 0.25𝑓𝑓𝑐𝑐𝑐𝑐 < 𝜎𝜎𝑐𝑐𝑐𝑐 ≤ 0.50𝑓𝑓𝑐𝑐𝑐𝑐; and 𝛼𝛼𝑐𝑐𝑐𝑐 =

2.5�1 − 𝜎𝜎𝑐𝑐𝑐𝑐/𝑓𝑓𝑐𝑐𝑐𝑐� for 0.50𝑓𝑓𝑐𝑐𝑐𝑐 < 𝜎𝜎𝑐𝑐𝑐𝑐 ≤ 𝑓𝑓𝑐𝑐𝑐𝑐 

αe  modular ratio, 𝛼𝛼𝑒𝑒 = 𝐸𝐸𝑠𝑠/𝐸𝐸𝑐𝑐𝑐𝑐 

αl  prestressing force transfer degree, which is ≤ 1.0 for pretensioned tendons, and equal to 

1.0 for other types of prestressing 

βτ ratio of mean fiber-matrix shear stress to tensile strength, 𝛽𝛽𝜏𝜏 = 𝜏𝜏𝑓𝑓 𝑓𝑓𝑐𝑐𝑐𝑐⁄ . In the typical 

case of concrete matrix, βτ adopts the value of 1,45 for hooked fibers and 0,70 for 

straight fibers. Mean value considered for crimped fibers 

δp angle between prestressed tendon axis and beam axis 

γv partial factor for concrete shear contribution. According to the 2nd generation of EC2, 

= 1,4 for persistent and transient design situation or fatigue. For accidental design 

situation 1,15. Necessary to carry out a reliability analysis to confirm these values. 

η0  fiber orientation factor, η0 = 0.405. 



η1  fiber length efficiency factor. If Lf ≤ lc  η1 = 0.5; otherwise 𝜂𝜂1 = 1 − 𝑙𝑙𝑐𝑐
2𝐿𝐿𝑓𝑓

 

ν1 strength reduction factor for concrete cracked in shear, ν1 = 0.6 for fck ≤ 60 MPa and ν1 

= 0.9-fck/200 for fck > 60 MPa 

θ strut angle with respect beam axis 

ρl,b  longitudinal tensile reinforcement ratio relative to effective depth d and the width b. For 

members with mild steel reinforcement and tendons, 𝛼𝛼𝑒𝑒𝜌𝜌𝑙𝑙,𝑏𝑏 = 𝛼𝛼𝑒𝑒,𝑠𝑠𝜌𝜌𝑠𝑠,𝑏𝑏 + 𝛼𝛼𝑒𝑒,𝑝𝑝𝜌𝜌𝑝𝑝,𝑏𝑏 being 

𝛼𝛼𝑒𝑒,𝑠𝑠 = 𝐸𝐸𝑠𝑠 𝐸𝐸𝑐𝑐𝑐𝑐⁄ , 𝛼𝛼𝑒𝑒,𝑝𝑝 = 𝐸𝐸𝑝𝑝 𝐸𝐸𝑐𝑐𝑐𝑐⁄ , 𝜌𝜌𝑠𝑠,𝑏𝑏 = 𝐴𝐴𝑠𝑠 𝑏𝑏𝑏𝑏⁄ , 𝜌𝜌𝑝𝑝,𝑏𝑏 = 𝐴𝐴𝑝𝑝 𝑏𝑏𝑏𝑏⁄  and b the width of the 

cross-section. For the case of unbonded tendons, Ap = 0. 

ρl,w same as ρl,b but relative to web width bw 

σcp concrete compressive stress at the centroid due to axial/prestressing load,σcp = NEd/Ac 

(NEd>0 compression) 

σsy steel fiber yield strength 

𝜎𝜎𝑡𝑡 mean value of the tensile stresses in the FRP stirrups crossing the shear critical crack 

τf mean fiber-matrix shear stress. See definition of βτ 

τmax bond strength of FRP tendon. 

ζ combined size and slenderness effect factor (LoAs II and III) 

ζ’ size effect factor for LoA I, equal to ζ but assuming a/d = 4 
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Appendix A: Derivation of LoA II (CCCM) from LoA III (MASM) 

A1. Detailed derivation of the main CCCM equation: 

In LoA III (MASM), the general equation for the shear strength is given as: 

𝑉𝑉𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑐𝑐𝑐𝑐 + 𝑉𝑉𝑠𝑠𝑠𝑠 = (𝑣𝑣𝑐𝑐 + 𝑣𝑣𝑤𝑤 + 𝑣𝑣𝑙𝑙)
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
⋅ 𝑏𝑏 ⋅ 𝑑𝑑 + 𝑉𝑉𝑠𝑠𝑠𝑠 

Substituting the detailed components: 

 𝑉𝑉𝑅𝑅𝑅𝑅 = 𝜁𝜁 ���0.70 + 0.18𝐾𝐾𝑇𝑇 + �0.20 + 0.50
𝑏𝑏
𝑏𝑏𝑤𝑤
� 𝑣𝑣𝑠𝑠�

𝑥𝑥
𝑑𝑑

+ 0.02𝐾𝐾𝑇𝑇�
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏
𝐾𝐾𝑝𝑝 + 𝑣𝑣𝑤𝑤 + 𝑣𝑣𝑙𝑙�

𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑏𝑏 + 𝑉𝑉𝑠𝑠𝑠𝑠 

For simplification, we assume KT = 1, KP = 1, and adopt safe average values of vw = 0.035 and 

vl = 0.025. Substituting these values: 

 𝑉𝑉𝑅𝑅𝑅𝑅 = �𝜁𝜁 ��0.88 + �0.20 + 0.50
𝑏𝑏
𝑏𝑏𝑤𝑤
�𝑣𝑣𝑠𝑠�

𝑥𝑥
𝑑𝑑

+ 0.02�
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏
+ 0.035 + 0.025�

𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑏𝑏 + 𝑉𝑉𝑠𝑠𝑠𝑠 

To further simplify, the terms vw = 0.035 and the constant 0.02 are incorporated in the x/d 

multiplier, assuming an average z/d = 0.35. Similarly, vl = 0.025 is added to the vs factor, with 

an average vs=0.25. For simplifying reasons, when introducing these constant values inside the 

parenthesis, the terms 𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏
 and 𝜁𝜁 have been considered equal to 1: 

𝑉𝑉𝑅𝑅𝑅𝑅 = �𝜁𝜁 ��0.88 +
0.02
0.35

+
0.035
0.35

+ �0.20 +
0.025

0.35 · 0.25
+ 0.50

𝑏𝑏
𝑏𝑏𝑤𝑤
�𝑣𝑣𝑠𝑠�

𝑥𝑥
𝑑𝑑�
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏 �
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑏𝑏 + 𝑉𝑉𝑠𝑠𝑠𝑠 = 

= �𝜁𝜁 ��1.04 + �0.49 + 0.50
𝑏𝑏
𝑏𝑏𝑤𝑤
�𝑣𝑣𝑠𝑠�

𝑥𝑥
𝑑𝑑�
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏 �
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑏𝑏 + 𝑉𝑉𝑠𝑠𝑠𝑠 ≈ 

≈ 𝜁𝜁
𝑥𝑥
𝑑𝑑
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑏𝑏 + 0.5𝜁𝜁 �1 +

𝑏𝑏
𝑏𝑏𝑤𝑤
�𝑣𝑣𝑠𝑠

𝑥𝑥
𝑑𝑑
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑏𝑏 + 𝑉𝑉𝑠𝑠𝑠𝑠 = 

≈ 𝜁𝜁
𝑥𝑥
𝑑𝑑
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 + 0.5𝜁𝜁 �1 +

𝑏𝑏
𝑏𝑏𝑤𝑤
�
𝑉𝑉𝑠𝑠𝑠𝑠
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑏𝑏

𝑥𝑥
𝑑𝑑
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑏𝑏 + 𝑉𝑉𝑠𝑠𝑠𝑠 = 

= 𝜁𝜁
𝑥𝑥
𝑑𝑑
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 + 𝑉𝑉𝑠𝑠𝑠𝑠 �1 + 0.5𝜁𝜁 �1 +

𝑏𝑏
𝑏𝑏𝑤𝑤
�
𝑥𝑥
𝑑𝑑
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏 � = 𝜁𝜁
𝑥𝑥
𝑑𝑑
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 + 𝑉𝑉𝑠𝑠𝑠𝑠[1 + ∆𝑉𝑉𝑉𝑉𝑉𝑉] 



The term ∆𝑉𝑉𝑉𝑉𝑉𝑉= 0.5𝜁𝜁 �1 + 𝑏𝑏
𝑏𝑏𝑤𝑤
� 𝑥𝑥
𝑑𝑑
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏
 considers the increase in the concrete contribution to 

the shear strength due to the confinement caused by the stirrups to the compression chord 

concrete. An average value ∆𝑉𝑉𝑉𝑉𝑉𝑉= 0.4 is adopted to simplify the calculation procedure: 

𝑉𝑉𝑅𝑅𝑅𝑅 = 𝜁𝜁
𝑥𝑥
𝑑𝑑
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 + 1.4𝑉𝑉𝑠𝑠𝑠𝑠 

A2. Detailed derivation of the Vcu,min expression 

For some cases, vw is an important shear contribution and the value adopted in A1 (vw =0.035) 

is too conservative. This may happen for members, especially one-way slabs, with low values 

of d or low values of x/d (assumed x/d < 0.2 in the following). It has been considered that 

there is no shear reinforcement: 

𝑉𝑉𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑣𝑣𝑐𝑐 + 𝑣𝑣𝑤𝑤) 𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑏𝑏= 

 = �𝜁𝜁 �(0.70 + 0.18𝐾𝐾𝑇𝑇)
𝑥𝑥
𝑑𝑑

+ 0.02𝐾𝐾𝑇𝑇�
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏
𝐾𝐾𝑝𝑝 + 𝑣𝑣𝑤𝑤�

𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑏𝑏 = 

Assuming KT = 1, KP = 1, and substituting Ecm and Gf for a 25 MPa compressive strength 

concrete: 

𝑉𝑉𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 = �𝜁𝜁 �0.88
𝑥𝑥
𝑑𝑑

+ 0.02�
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏
+ 167

𝑓𝑓𝑐𝑐𝑐𝑐
𝐸𝐸𝑐𝑐𝑐𝑐

𝑏𝑏𝑤𝑤
𝑏𝑏 �1 +

2 · 𝐺𝐺𝑓𝑓 · 𝐸𝐸𝑐𝑐𝑐𝑐
𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐2 · 𝑑𝑑0

��
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑏𝑏 ≈ 

≈ �𝜁𝜁 �0.88
𝑥𝑥
𝑑𝑑

+ 0.02�
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏
+ 0.015

𝑏𝑏𝑤𝑤
𝑏𝑏
�1 +

1206
𝑑𝑑0

��
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑏𝑏 = 

≈ �𝜁𝜁 �0.88
𝑥𝑥
𝑑𝑑

+ 0.02� 𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒 + 0.015𝑏𝑏𝑤𝑤 �1 +
1206
𝑑𝑑0

��
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑑𝑑 = 

For simplicity, and from the safe side, we assume 𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒=𝑏𝑏𝑤𝑤: 

𝑉𝑉𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 ≈ �𝜁𝜁 �0.88
𝑥𝑥
𝑑𝑑

+ 0.02� + 0.015 �1 +
1206
𝑑𝑑0

��
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑤𝑤𝑑𝑑 = 

≈ �𝜁𝜁0.88
𝑥𝑥
𝑑𝑑

+ 0.02𝜁𝜁 + 0.015 +
18
𝑑𝑑0
�
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑤𝑤𝑑𝑑 ≈ 



This expression is intended for the cases in which vc is small compared to vw. For this reason, 

x/d will be assumed to be equal to 0.2. Moreover, for further simplicity, the terms 0.02𝜁𝜁 and 

0.015 are disregarded: 

𝑉𝑉𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 ≈ �𝜁𝜁0.176 + 18
𝑑𝑑0
� 𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑤𝑤𝑑𝑑 ≈  0.18 �𝜁𝜁 + 100

𝑑𝑑0
� 𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑤𝑤𝑑𝑑 

A3. Simplification of the expression for maximum shear strength, Vrd,max 

For the maximum shear strength given by the concrete strut capacity, assuming αcw = 1 (no axial 

force), z = 0.9d, ν1 = 0.6 (conventional concrete), and cotθ = 1.85 (average value between 

reinforced and prestressed concrete beams according to the databases): 

𝑉𝑉𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼𝑐𝑐𝑐𝑐𝑏𝑏𝑤𝑤𝑧𝑧𝜈𝜈1𝑓𝑓𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

1 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃
= 1 · 𝑏𝑏𝑤𝑤 · 0.9𝑑𝑑 · 0.6𝑓𝑓𝑐𝑐𝑐𝑐

1,85
1 + 1,852

≈ 0.225𝑓𝑓𝑐𝑐𝑐𝑐𝑏𝑏𝑤𝑤𝑑𝑑 

 

Appendix B: Derivation of LoA I from LoA II (CCCM) 

B1. Simplification of the concrete contribution 

From Loa II (CCCM): 

𝑉𝑉𝑐𝑐𝑐𝑐 = 𝜁𝜁
𝑥𝑥
𝑑𝑑
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 

The size effect, assuming a/d = 4, becomes:   

𝜁𝜁′ =
2

�1 + 𝑑𝑑0
200

�
1
4
�
0.2

≈
1.5

�1 + 𝑑𝑑0
200

 

Assuming now rectangular cross-section (bv,eff = bw), 𝑥𝑥
𝑑𝑑

= 0.75(𝛼𝛼𝑒𝑒𝜌𝜌𝑙𝑙)1/3 and 𝛼𝛼𝑒𝑒=6.0 
(corresponding to fck = 35 MPa): 

𝑉𝑉𝑐𝑐𝑐𝑐 = 𝜁𝜁′
𝑥𝑥
𝑑𝑑
𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 = 𝜁𝜁′ · 0.75(6 · 𝜌𝜌𝑙𝑙)1/3 𝑓𝑓𝑐𝑐𝑐𝑐

𝛾𝛾𝑣𝑣
𝑏𝑏𝑣𝑣,𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 = 1.35𝜁𝜁′𝜌𝜌𝑙𝑙

1/3 𝑓𝑓𝑐𝑐𝑐𝑐
𝛾𝛾𝑣𝑣
𝑏𝑏𝑤𝑤𝑑𝑑 

 

B2. Detailed simplification of the shear reinforcement contribution: 

𝑉𝑉𝑠𝑠𝑠𝑠 = 1.4(𝑑𝑑𝑠𝑠 − 𝑥𝑥) cot 𝜃𝜃
𝐴𝐴𝑠𝑠𝑠𝑠
𝑠𝑠
𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦 = 1.4(𝑑𝑑𝑠𝑠 − 𝑥𝑥)

0.85𝑑𝑑𝑠𝑠
𝑑𝑑𝑠𝑠 − 𝑥𝑥

𝐴𝐴𝑠𝑠𝑠𝑠
𝑠𝑠
𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦 ≈ 1.20

𝐴𝐴𝑠𝑠𝑠𝑠
𝑠𝑠
𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦 


