H Py =CINTER”

HORMIGON
y ACERO

Disponible en www.hormigonyacero.com
Hormigon y Acero, 2026
https://doi.org/10.33586/hya.2025.4128

ARTICULO EN AVANCE ON LINE

A Levels-of-Approximation Unified Mechanical Model for the Shear Strength of Slender and
Short Reinforced and Prestressed Concrete Beams with Steel, FRP, or Fiber Reinforced
Concrete

Antoni Cladera®, Eva Oller, Carlos Ribas, Juan Murcia-Delso, Noemi Duarte, Jestis Miguel Bairan

DOI: https://doi.org/10.33586/hya.2026.4128

Para ser publicado en: Hormigon y Acero

Por favor, el presente articulo debe ser citado asi:

Cladera, A., Oller, E. Ribas, C., Murcia-Delso, J., Duarte, N., & Bairan, J.M. (2026) A
Levels-of-Approximation Unified Mechanical Model for the Shear Strength of Slender and
Short Reinforced and Prestressed Concrete Beams with Steel, FRP, or Fiber Reinforced
Concrete, Hormigon y acero, https://doi.org/10.33586/hya.2026.4128

Este es un archivo PDF de un articulo que ha sido objeto de mejoras propuestas por dos
revisores después de la aceptacion, como la adicién de esta pagina de portada y metadatos, y
el formato para su legibilidad, pero todavia no es la versidn definitiva del articulo. Esta versién
serd sometida a un trabajo editorial adicional, y una revisién mas antes de ser publicado en su
formato final, pero presentamos esta versién para adelantar su disponibilidad.

En el proceso editorial y de produccién posterior pueden producirse pequefias modificaciones
en su contenido.

© 2026 Publicado por CINTER Divulgacion Técnica para la Asociacion Espafiola de Ingenieria
Estructural, ACHE


http://www.hormigonyacero.com/
https://doi.org/10.33586/hya.2026.4128

A Levels-of-Approximation Unified Mechanical Model for the Shear Strength of Slender
and Short Reinforced and Prestressed Concrete Beams with Steel, FRP, or Fiber
Reinforced Concrete

Antoni Cladera'”, Eva Oller?, Carlos Ribas', Juan Murcia-Delso?, Noemi Duarte?, Jesus Miguel Bairan?

! Department of Industrial Engineering and Construction. Universitat de les Illes Balears, Spain.

2 Department of Civil and Environmental Engineering. Universitat Politécnica de Catalunya, Spain.

*Corresponding author: Antoni Cladera. Department of Industrial Engineering and
Construction, Universitat de les Illes Balears. Ctra. Valldemossa, km 7.5, Palma (Balearic

Islands), Spain. Phone number: +34 971 25 9946. E-mail: antoni.cladera@uib.es

Abstract

This paper presents a Levels-of-Approximation (LoA) unified mechanical model for the shear
strength of slender and non-slender reinforced and prestressed concrete beams, with
rectangular, T- or [-shaped sections. It applies to members reinforced with steel or fiber-
reinforced polymer (FRP) bars, or fiber-reinforced concrete (FRC). Derived from the Multi-
Action Shear Model (MASM), the model integrates the key shear transfer actions, including
shear carried by the compression chord, residual tensile stresses across the critical crack,
dowel action of longitudinal reinforcement and contributions from stirrups, if present.
Structured within the LoA framework, the model offers increasing complexity and accuracy
for various structural design and assessment scenarios, from preliminary design (LoA 0) to
detailed assessment (LoA III). Its adaptability is demonstrated through different extensions,
including fatigue for RC beams without stirrups. The model is validated using 2,714 test
results from 14 experimental databases, showing consistent predictions with reduced scatter,
especially at higher LoAs.

This unified mechanical model provides a robust tool for both the design and assessment of
structural concrete elements, offering a systematic approach to integrate advanced mechanical

understanding with practical engineering needs.
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Resumen

Este articulo presenta un modelo mecanico unificado, estructurado bajo la metodologia de
Niveles de Aproximacion (LoA, por sus siglas en inglés), para estimar la resistencia a cortante
de vigas esbeltas y no esbeltas de hormigén armado y pretensado, con secciones transversales
rectangulares, en T o en . El modelo es valido para elementos reforzados con barras de acero
o de polimeros reforzados con fibra (FRP), asi como para hormigones reforzados con fibras
(FRC). Derivado del Multi-Action Shear Model (MASM), el modelo integra los principales
mecanismos de transferencia del esfuerzo cortante, incluyendo la contribucion de la cabeza
comprimida, las tensiones residuales de traccion a través de la fisura critica, el efecto pasador
de la armadura longitudinal y la contribucion de la armadura transversal, si la hubiera.

El modelo, estructurado en el marco de los Niveles de Aproximacion, ofrece una complejidad
y precision crecientes para distintos escenarios de proyecto y evaluacion estructural, desde el
disefio preliminar (LoA 0) hasta la evaluacion detallada (LoA III). Su adaptabilidad se
demuestra mediante diversas extensiones, incluyendo el analisis a fatiga en vigas de hormigon
armado sin estribos. La validacion se ha realizado con 2.714 resultados experimentales
procedentes de 14 bases de datos, mostrando predicciones consistentes y con baja dispersion,
especialmente en los niveles mas elevados de aproximacion.

Este modelo mecénico unificado constituye una herramienta robusta tanto para el proyecto
como para la evaluacion de elementos estructurales de hormigoén, proporcionando un enfoque
sistematico que integra un conocimiento mecanico avanzado con las necesidades practicas de

la ingenieria.



1. Introduction

The long-standing debate on the shear strength of reinforced concrete (RC) members dates
back to the earliest research in this field. As early as 1907, Mdrsch identified three
fundamental shear transfer actions or resisting mechanisms [1]: 1) shear stresses in the
compression zone, 2) dowel action in the longitudinal reinforcement, and 3) tensile forces in
the web reinforcement, if present. Faber introduced the arch effect as another crucial
mechanism in a series of superb papers published in 1916 [2]. However, it was not until 1966
that Fenwick and Paulay [3,4], through ad-hoc experiments, systematically analyzed the
principal mechanisms of shear resistance in RC beams and were the first to quantify their
contributions experimentally. Their pioneering work also incorporated aggregate interlock
across cracks and marked the first estimation of shear stress attributable to this mechanism.
These findings became a foundational step for further research and were incorporated into the
ACI-ASCE recommendations in 1973 [5].

Subsequent studies focused on quantifying the contributions of each shear transfer mechanism,
particularly aggregate interlock [6—8]. Prof. Fritz Leonhardt, in his famous keynote address,
highlighted that ultimate shear strength is influenced by more than 20 parameters [9]. Since
then, researchers have developed increasingly sophisticated models to account for many of
these factors, while practical design codes require simplifications. As Prof. Paul E. Regan
observed in 1993 [10], simplifying the problem often involves neglecting secondary factors,
but what is secondary in one case may be primary in another. An example of this balance is
the ACI-318-19 design formula for shear strength [11], which is derived from six models
based on different assumptions [12—17]. Of these, two prioritize aggregate interlock as the
dominant mechanism [14,15], while the remaining four focus on shear stresses transferred by
the compression zone.

In recent years, Campana et al. [18] proposed a novel methodology for evaluating shear
transfer mechanisms during testing, combining detailed crack pattern analysis and crack
kinematics. This approach allowed researchers to track the evolution of shear-transfer actions
during different loading phases. Cavagnis et al. [19,20] and Huber et al. [21,22] enhanced this

methodology by incorporating Digital Image Correlation techniques and advanced models of



aggregate interlock. Cavagnis et al. demonstrated that the relative contributions of shear-
transfer actions vary with beam geometry and loading conditions. For slender beams (a/d >
2.5), aggregate interlock predominates, whereas for short beams (a/d < 2.5), direct strut-and-
tie mechanisms govern the behavior. This transition occurs at the vertex of the so-called Kani
valley [23], where the dominant shear mechanism shifts with the slenderness ratio.

Recently, Montoya et al. [24] used the Digital Image Correlation (DIC) technique to measure
the sliding and opening of cracks in six RC beams without transversal reinforcement. This
enabled using the Walraven model to compute the stresses along cracks, and estimated a
reduced contribution of the aggregate interlock across the shear crack in the web, until
approximately 90%—-98% of the total shear capacity according to six tests on RC beams
without stirrups (Fig. 1b). At this loading level, a second, more horizontal branch of the
critical shear crack forms (Fig. 1¢) inside the compression chord, accompanied by significant
sliding resulting in higher levels of shear stresses. These observations highlight a
complementary relationship, rather than a contradiction, between models based on shear

transferred through the compression chord [25-27] and those prioritizing aggregate interlock

[28,29], including the branch of the crack in the compression chord.

Figure 1. Crack pattern evolution in a RC beam, without stirrups, failing on shear.

A different methodology was employed by Bairan et al. [30], using optimized strut-and-tie
models with concrete ties to understand shear transfer actions in RC beams without stirrups.
This model considers stress transfer capacity across cracks by accounting for the inclination
between the stress field and crack kinematics (opening and sliding). An experimental case
study demonstrated that different shear-resisting actions dominate in different regions of the
beam. For instance, aggregate interlock effectively transfers stresses in zones with near-
vertical cracks. However, in areas with smaller bending moments and more inclined cracks,

the stress components in the crack plane primarily induce direct tension with limited shear in



the crack plane. Consequently, aggregate interlock becomes insufficient to carry the full shear
force, and failure is governed by the compression zone’s capacity.

In this context, two research groups—from the Universitat Politécnica de Catalunya and the
Universitat de les llles Balears—led by Prof. Antonio Mari, sequentially developed a
mechanically derived shear strength model between 2014 and 2016. The initial development
of the model began with efforts to explain the shear strength in ULS of beam-and-block floors
[31] and beams reinforced with fiber-reinforced polymer (FRP) bars [32,33]. In both cases, it
was observed that shear transfer in the compression zone was the dominant mechanism: in the
first case, due to the prominence of the compression zone relative to the web width, and in the
second case, due to the large crack widths in the web caused by the low modulus of elasticity
of the FRP bars.

Building on these specific cases and integrating different transfer actions, as will be
summarized in the following section, the general shear-flexural strength mechanical model for
the design and assessment of reinforced concrete beams was formulated. This was initially
applied to beams with rectangular cross-sections [34], then extended to T- and I-shaped beams
[35], and finally to prestressed concrete beams [36]. Collectively, these contributions formed
what we termed the Multi-Action Shear Model (MASM). The particular case of beams
subjected to distributed loads was addressed in [37].

As the MASM presented closed-form equations for each shear transfer action, the model was
simplified into the Compression Chord Capacity Model (CCCM), with the main premise that
the shear transferred across the uncracked compression chord was the principal transfer action
[38]. This simplified model also served as the base for the version developed for the ACI 318-
19 update [16].

These mechanical models were further extended to address specific cases, including the shear
strength of non-slender reinforced concrete beams [39], steel fiber reinforced concrete (SFRC)
beams without stirrups [40], and the shear fatigue strength of RC members without stirrups
[41]. Other applications included corrosion-damaged RC beams [42] and their long-time shear
strength prediction [43,44], and prestressed concrete beams with FRP tendons [45]. The model

was even adapted for punching shear of slabs [46,47], among other cases [48—50] not



discussed here for the sake of conciseness. Moreover, a detailed discussion on open questions
on shear behavior of structural concrete and the answers provided by mechanical models was
recently published by Prof. Mari [51].

The 21 references cited earlier represent the culmination of approximately 12 years of
dedicated and dynamic research. While these contributions were not always developed in a
strictly sequential or comprehensive manner, each played a vital role in advancing the overall
understanding of the subject. To bring coherence and clarity, this paper brings together those
valuable insights into a unified mechanical model, structured in a logical progression—from
the most general formulations to the more commonly encountered specific applications.
Additionally, the work embraces the Level-of-Approximation (LoA) framework introduced in
the Model Code 2010 [52], reinforcing a consistent and practical approach to model
development.

The LoA framework ensures that the refinement of a design model corresponds to the required
level of detail in the calculation process—whether for preliminary design, detailed design, or
structural assessment—and considers the importance of the structural element in question [53].
For preliminary design, quick estimations are prioritized, requiring minimal calculation effort.
In contrast, the strength assessment of existing structures often requires sophisticated models
for accurate capacity evaluation, as decisions regarding reinforcement, rehabilitation, or
demolition can carry substantial financial, social, and environmental implications.
Accordingly, the complexity and effort involved in the design process increase with the LoA.
To maintain consistency across all LoAs, a unified physical model serves as the foundation,
with conservative simplifications applied as the design complexity decreases. In this paper, the
most refined model, corresponding to LoA III, is based on the Multi-Action Shear Model
(MASM). From this formulation, the Compression Chord Capacity Model (CCCM) is
transparently derived and proposed as LoA II. Further simplifications, tailored primarily for
the design of new structures, constitute LoA I. Additionally, a preliminary design approach,
referred to as LoA 0, is also discussed. This framework ensures coherent outcomes across
different LoAs, with naturally more conservative results associated with lower levels of

approximation, suitable for situations where data may be incomplete or imprecise.



This paper will present the LoAs in the logical sequence of their derivation (LoA Il — II —
1/0) although the intended use would be in the reverse order (LoA 0/1 — II — III).

The key contribution of this work is the integration of the MASM and CCCM within a unified
Level-of-Approximation framework. To the authors’ knowledge, this is probably the first
unified model capable of addressing a broad range of cases involving the shear strength of
slender and short reinforced and prestressed concrete beams, with or without stirrups,
considering rectangular, T- or I-cross sections, with steel reinforcement, FRP reinforcement,
or fiber-reinforced concrete. The extensions presented in this paper are primarily based on
works previously published by the authors in separate contributions, which are here
systematically compiled and adapted to ensure full internal consistency and practical
applicability within the LoA framework, particularly at LoA II. This reorganization allows the
different extensions to be applied in a homogeneous manner, providing a balanced
compromise between mechanical accuracy and simplicity. In addition, in the specific case of
beams internally reinforced with FRP bars—one of the earliest applications that motivated the
development of the underlying mechanical model—the simplified formulation proposed at
LoA II constitutes a new contribution, offering a more straightforward and fully integrated
approach within the unified framework, now accounting for the successive developments of

the general model.

2. Brief introduction to the derivation of the Multi-Action Shear Model

The primary assumption of the Multi-Action Shear Model (MASM), supported by the
empirical observations of many researchers [25,54,55], is that once the second branch of the
critical crack develops, the load capacity does not significantly increase, as the softening of
concrete in the compression zone begins.

Linking the onset of shear failure to the propagation of the second branch of the critical crack
simplifies the problem significantly. This approach enables the formulation of a failure
criterion based on concrete stresses in the compression chord, using Kupfer’s biaxial failure
envelope [56]. This criterion relies on the compressive and tensile strengths of concrete,

parameters that exhibit less variability compared to those required in kinematic failure models.



In essence, the MASM assumes that the uncracked concrete in flexure experiences a
multiaxial state of principal stresses (o, 02), induced by the combined effects of shear force
(1), longitudinal bending stresses (ox), and vertical stresses (o) from local effects (Figure 2),
which collectively enhance the shear strength of the uncracked concrete. Building upon this
assumption and applying classic mechanics principles, the MASM derives explicit equations
(detailed in Section 3) for four shear transfer actions: shear transferred by the compression
zone, shear transferred across the critical crack due to residual tensile stresses, shear
transferred by dowel action of the longitudinal reinforcement, and shear transferred by the
stirrups, if they exist. These actions are interdependent. For instance, the confinement stresses
in the uncracked concrete, induced by stirrups, are accounted for when evaluating the shear

contribution from the uncracked concrete, or the dowel effect is considered negligible if there

Assumed

are not stirrups. A comprehensive derivation of the MASM can be found in [29].
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Figure 2. Considered distributions of stresses at the un-cracked concrete chord.

3. Level of Approximation III: the Multi-Action Shear Model (MASM)

Table 1, presenting Egs. (1)-(13) and Figure 3, shows all the equations and factors needed to
compute the shear strength of a reinforced or prestressed concrete member, with or without
stirrups, with rectangular, T- or I-shaped cross-section. The key aspects and distinct features of
this model will be highlighted in the following subsections. Refer to the Notations section for

the definition of the different parameters involved.



Table 1. Summary of the equation for the LoA III: MASM

Main expressions

Shear strength Vea = Veu + Veu = Vramax (1)
Concrete contribution Vou = (0, + v, + 1)) % -b-d 2)
ASW
Shear reinforcement Veu = (ds — x) cot 6 Tf ywd (32)
contribution = _ Asw Tywd
v = (dg —x) cot 0 s Fobd (3b)
Maximum shear strength _ cotd
(strut crushing) VRd,max - acwbwzvlfcd 1+cot20 (4)
Contributing . . .
Dimensionless expressions
component
bve
Compression chord ve = ¢{(0.70 + 0.18K; + (0.20 + 0.50 %) vs) %+ 0.02K, } 2L K, (5)
2:G-Eem
Cracked concrete web v, = 167 %%W (1 + fczft—do) (6)
Lgngltudlnal if v, >0 > v, = 0.23 @ePLp (7a)
reinforcement ' 1-x/d
(dowel effect) ifvg=0-v,=0 (7b)
Factors Expressions
X _ X_O _ _ 2
=0 aepl,b( 1+ fl + aepz,b> (8a)
Relative neutral axis Ngg >0 o0rP » =%, Agja < h (8b)
depth ¢ d d
= (R _*\ (2 e
Ac/a = (d d) (h) oeptfet (8¢)
lf x < hf 4 bv,eff = b‘U = bW + th < b (93)
Effective flange width ) np\3/2
if x>he > byerr = by + (b, — by, (L) (9b)
. C 0.85d;
Critical crack inclination cot 8 = @ <25 (10)
. 2 a\02
Size and slenderness {=—— (;) (11)
effect e
Parameter rela?ed to M., Ky = 0.1+ 09 bw L 25 hf tens (btens_bw) (12)
in T cross-section b h b
Parameter related to M., K, =1+03 P cos 6p2yt (13)
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Figure 3. Graphical summary of the LoA 11l (MASM) with the definition of the basic parameters.
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3.1 Relative neutral axis depth, x/d
The ratio of the neutral axis depth to the effective depth, x/d, is the key dimensionless
parameter governing shear strength in the proposed model. For RC members, this parameter is
determined by Eq. (8a), while for PC or RC members subjected to compressive axial loads, it
is given by Egs. (8b) and (8c).
As previously discussed and illustrated in Fig. 1, the shear critical crack (SCC) evolves from
an initial flexural crack and develops in two distinct stages. This two-phase behavior has also
been observed by other researchers during tests on notched specimens specifically designed to
investigate mixed-mode crack propagation in reinforced concrete (see Figs. 4a and 4b) [54].
From Fig. 4, it becomes evident that internal forces may redistribute between stages 0-A and

A-B of the load-displacement curve.
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Figure 4. Qualitative scheme of crack propagation: a) crack trajectory [54]; b) load-
displacement curve [54]; c) critical crack in MASM and simplified models; d) studied plane in

shear friction models vs. the critical crack in MASM.

The MASM and its simplified models (Fig. 4c) focus on the crack stage corresponding to

Point A in Fig. 4a, representing the onset of critical crack propagation. In contrast, models



based on aggregate interlock or shear friction are typically concerned with the fully developed
crack (Fig. 4d), where shear friction stresses are related to flexural strains, assessed at the level
of the longitudinal reinforcement or at a specified depth in the web.

For quick estimations and to grasp the order of magnitude, typical x/d values as a function of
the tensile reinforcement ratio, o;», are x/d ~ 0.20 for lightly RC beams, x/d ~ 0.25 for
conventionally RC beams, or x/d £ 0.35 for heavily RC beams.

For PC members, Egs. (8b) and (8c¢), derived in [36], apply. Notably, these formulas are

straightforward and applicable to both prestressed members and members subjected to

Ocp

compressive loads. The increase in the neutral axis depth depends on the ratio , rather

Ocptfet
than solely on o,.
The MASM (LoA III) has not been validated for members under tensile loads. However, the
CCCM (LoA II) has been validated in such cases, as will be detailed in Section 4. For these
scenarios, it is necessary to account for the concomitant bending moment, M,, in the design

sections [38].

3.2 Size and slenderness effect
The brittle nature of failure that occurs when the second branch of the critical crack propagates
demands considering the size effect, which depends on the dimensions of the concrete region
subjected to compressive and tensile stresses. To account for this, a combined size and
slenderness factor is defined in Eq. (11). This factor integrates the size effect term proposed by
the ACI Committee 446 [57] (first term in the equation) with a slenderness-dependent term,
based on the shear span-to depth ratio, a/d, derived from empirical studies using genetic
programming [58,59]. These studies demonstrated that the term d/a”?’, simplified to d/a"?,
accurately predicts the influence of slenderness. For accurate calculations in continuous beams
or beams with distributed loads, it is recommended to refer to the definition of the shear span,
a.
This integration represents a significant advancement, as it unifies the MASM and CCCM

formulations while grounding the size effect treatment in a robust theoretical framework. In



the original MASM formulation, an empirical factor proposed by other authors was adopted
[25]. The updated approach is theoretically consistent, as the failure in the MASM is fully

coherent with the failure explained by the fracture mechanics-based models [17,54,55].

3.3  Effective compression flange width
The influence of compression flanges on shear transfer mechanisms was thoroughly analyzed
during the derivation of the MASM for T- and I-shaped beams [35]. However, to make the
model more practical for everyday engineering applications, these effects were simplified into
more compact expressions. In the MASM, the contribution of the compression flanges to shear
strength is accounted for through an effective flange width, defined by Egs. (9a) and (9b). This
effective width depends on the section geometry and on the neutral axis depth. For further
details, refer to the figure included in Table 1.
It should be noted that for rectangular beams, the effective flange width corresponds to the
section width (b = b, .= b,,). For L-shaped sections with a compression flange, the term 2/, of

Eq. (9a) is replaced by /4y, which represents the thickness of the compression flange.

3.4  Critical crack inclination
The inclination of the critical crack is a key parameter in evaluating shear strength, as it
determines where the critical crack intersects the compression zone and affects the
contribution of shear reinforcement, which depends on the number of stirrups intersecting the
first branch of the critical crack. Based on experimental observations reported by the authors
in [35], the horizontal projection of the first branch of the critical flexural-shear crack is
assumed to be 0.85d; (see Fig. 4c). This assumption corresponds to the crack inclination
defined in Eq. (10).
Crack inclination is influenced by both the longitudinal and transverse reinforcement ratios, o
and py, as these factors affect the strain distribution. However, longitudinal reinforcement has
been found to have a more significant impact on crack inclination, as observed by other

researchers [29,32]. For this reason, the MASM simplifies the analysis by focusing on the



longitudinal reinforcement through its relationship with the neutral axis depth. This approach
ensures the model remains straightforward and non-iterative, making it suitable for both
design and assessment purposes.

As the longitudinal reinforcement ratio increases, the mean inclination angle of the critical
crack decreases. This is consistent with the fact that for the same shear strain, the longitudinal
tensile strain, &, is lower when the longitudinal reinforcement ratio increases. For simplicity,
the model assumes that the inclination angle of the critical crack is equal to the angle of the

struts (0), when verifying the maximum shear strength according to Eq. (4).

3.5  Position of the critical section and the critical point inside the compression
chord

As the applied load increases, flexural cracks progressively develop with increasing bending
moments. The critical crack is assumed to be the one closest to the zero bending moment point
(see Fig. 1), initiating at the location where the bending moment diagram at failure reaches the
cracking moment of the cross-section. The critical section, where equilibrium equations were
set in the derivation of the model, is located at the point where this critical crack intersects the
neutral axis depth (see Fig. 5).

Based on these considerations, and on the vertical crack horizonal projection defined in
Section 3.4, the distance between the zero bending moment point and the initiation of the
critical crack is s.- = Mc/Vy, and the critical section is positioned at s, = s + 0.85d,. Typically,
this distance slightly exceeds ds, which is why, for design purposes, ds is used as the location

to verify the shear strength of RC members.
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Figure 5. Location of critical section: a) Simply supported region and cantilever under
concentrated loads; b) Simply supported region and cantilever under distributed loads.
Note: C.S.: critical section; M-C.R: multi-compressed region.

In PC members, the higher cracking moment shifts the critical crack farther from the zero
bending moment point compared to RC members. To address this, it is proposed to verify the
shear strength at a section located at a distance dy(1 + 0.46.,/fcm). The increased cracking
moment in prestressed sections is incorporated into the mechanical model through the strength
factor K, (Eq. 13 in Table 1), while the influence of the compression or tensile flanges on the
cracking loads is accounted for by factor K7 (Eq. 12). For RC beams without axial loads and
rectangular cross-sections, Kp= Kr=1.

The critical point within the compression chord, where failure is expected to initiate,
corresponds to the location of maximum damage. Its position depends on the distributions of
normal and shear stresses along the uncracked concrete chord. While this specific point is not
directly used in the application of the MASM, it is of theoretical interest. Studies conducted by
the authors [32] indicate that, assuming linear and parabolic distributions for the normal and
shear stresses, respectively, the critical point is located at a distance of approximately

»y = 0.425x from the neutral axis.



4. Level of Approximation II: the Compression Chord Capacity Model (CCCM)

The derivation of the CCCM equations (Table 2, Egs. (14)-(21) and Figure 6) from MASM is
detailed in Appendix A. To simplify the application of LoA II, the complete set of equations is
provided, though many parameters (Eqs. 18a, 18b, 18c, 19a, 19b, 20 and 21) remain as defined
for MASM in Table 1.

For RC beams, Eq. (18a) introduces a simplified expression for the relative neutral axis depth
(term on the right), which shows good accuracy as demonstrated in [38]. A simplification for
the expression of maximum shear strength is proposed in Eq. (17), with its derivation detailed
in Annex A3.

The reduction of neutral axis depth for RC beams under tensile axial loads is addressed by Eq.
(18d). While this approach simplifies the problem, the model still performs well, as shown in

Section 7 and [60].



Table 2. Summary of the equations for the LoA 1I: CCCM.

Main expressions

Shear strength Vra = Veu + Vou < Vramax (14)
o Veu = (%%bv,effd * ch,min (15a)
Concrete contribution v 100Y fer
Veumin = 0.18{¢ + 22} p (15b)
o’ W
Shear reinforcement Agw
contribution Vou = 1.4(d; = x) cot s fywa (16)
Maximum shear strength _ cotd
(strut Crushing) VRd,max - acwbwzvlfcd 1+cot20 0-225fcdbwd (17)
Factors Expressions
2 1/3
S=2 =y (—1 + /1 + aeplb) ~ 0.75(.pup) (18a)
Neg#0 0rP > 0<Z=244,, <% (18b)
Relative neutral axis depth W e\ o
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Figure 6. Graphical summary of the LoA Il (CCCM) with the definition of the basic parameters.
5. Level of Approximation I and 0

In cases where lower computational effort is sufficient, LoA I provides a simplified

alternative. Derived from LoA II (CCCM) as detailed in Appendix B, this approach assumes

all cross-sections are rectangular, disregarding the beneficial effects of compression flanges.

The model, outlined in Table 3 (Egs. (22)-(28) and Figure 7), is applicable to RC and PC

elements with or without stirrups but does not account for tensile axial forces.



In the most complex case—a PC beam with an I-cross section and stirrups—LoA I requires
only 7 equations and 12 variables, compared to the 18 equations and 21 variables used in LoA
I (MASM, see Table 1). LoA II (CCCM) offers an intermediate level of complexity.

Eq. (24) defines the lower-bound shear strength for members with low longitudinal
reinforcement, making it independent of the longitudinal reinforcement ratio. Due to its
simplicity, this equation is designated as LoA 0. Note that within the brackets of Eq. (24), two
size effects are considered: the compression chord size effect (¢', left term) and the size effect
due to the residual tensile stress transferred through the critical shear crack (100/dy, right
term).

Table 3. Summary of the Level of Approximation I procedure.

Main expressions

Shear strength Vea = Veu + Veu < Vramax (22)
’ fc

ch = 135( pl,wl/3 y_tbwd(l + Ax/d) « ch,min (23)
Concrete contribution 100 f

Veumin = 0.18{¢' + 22} femp g (24)

! do Yv
Shear reinforcement A
. Vo =122 d 2
contribution su s fywads (25)
Maximum shear strength
. V, = 0.225f.4b,,d 26
(StI'llt crushlng) Rd,max fcd w ( )
Factors Expressions
: — (h _ X0\ (4 _%cp .
Prestressing effect Ngg >0 orP - Ay = (d d) (h) O'Cp+fct>0 27)
;15
Size effect ¢ = % (28)
1+m
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Figure 7. Graphical summary of the LoA I with the definition of the basic parameters.

6. Uncracked regions in bending
In highly prestressed, simply supported concrete beams—such as certain T- or I-shaped beams
with minimal or no shear reinforcement—flexural cracking near the supports is often absent,

even under significant loading. In these regions, the thin beam web experiences high shear



stresses from the applied shear force, combined with compressive normal stresses induced by
prestressing. This creates a biaxial stress state of compression and tension. When the principal
stresses at the most critical point in the web exceed Kupfer’s biaxial failure envelope [56], a
diagonal crack forms across the entire beam height. Experimental evidence suggests that the
cracking load in such cases is nearly identical to the ultimate load [61-63].

As derived in [36], the shear strength under these conditions is given by Eq. (29):

Icby, Oc
Vaa = 2208f [1+a,%2 (29)

The factor 0.8 in Eq. (29) accounts for the interaction between compressive and tensile

stresses, as derived using Kupfer’s failure envelope [36]. It is worth noting that some design
codes omit this factor, which we consider a slightly unconservative approach.

For beams with transverse reinforcement, shear strength is calculated assuming the presence of
flexural cracks. In such cases, the previously described levels of approximation (LoAs) should

be used.

7. Validation of the LoA 0, L, I and III with experimental databases

The predictions of the defined Levels of Approximation (LoA) are validated against the ACI-
DACfStb evaluation databases developed by ACI Subcommittee 445-D. These include RC
beams without stirrups [64], RC beams with stirrups [65], PC beams without stirrups [66] and
PC beams with stirrups [66]. Table 4 summarizes the primary statistics of the experimental-to-
predicted strength ratios (Viest/Vprea).

For all comparisons in this paper, average concrete compressive strength and tensile steel
strength values were used, with partial safety factors set to 1. For the concrete tensile strength,
fe, and modulus of elasticity, E., the average values given in the Eurocode 2 of second
generation [67] have been used (see Notations section for the exact definition).

Generally, as the LoA increases, both the mean Vies/V,req ratio and its coefficient of variation
(CoV) improve. LoA III demonstrates consistently low CoV across all databases, including the
subsets of T-beams. In contrast, LoA I, which does not account for compression flanges,

exhibits higher safety margins for T-beam subsets. Detailed comparisons with code-based



methods are outside the scope of this paper but are available in [36,38]. Note that for PC

beams without stirrups, each LoA is combined, depending on the cracking state for the

predicted maximum load, with the shear strength for regions uncracked in bending.

Table 4. Comparison of tests results vs. predictions for different LoAs.

Database (or sub-database) # LoA 0 (Vaymin) LoAl LoA Tl LoA III
Mean CoV Mean CoV Mean CoV Mean CoV

RC beams w/o stirrups 784 1.84 29.5% 1.27 22.9% 1.16 18.0% 1.03 17.8%
RC only T-beams w/o stirrups 64 2.19 35.6% 1.40 34.2% 1.09 22.2% 1.14 20.4%
RC beams with stirrups 170 1.53 22.4% 1.23 16.7% 1.14 14.2% 1.09 15.5%
RC only T-beams with stirrups 57 1.52 27.3% 1.34 15.1% 1.20 12.4% 1.21 12.7%
PC beams w/o stirmps 214 - - 1.84 30.6% 1.21 22.8% 1.10 22.2%
PC only T-beams w/o stirrups 112 - - 1.92 33.5% 1.21 21.8% 1.15 21.0%
PC beams with stirrups 17 - - 148 232% 120  209% 1.10  14.4%

(115 with T-cross section)

Figure 8 illustrates the correlation between experimental results, Vs, and predictions for the
four LoAs. The blue line represents perfect correlation, and dashed black lines indicate data
trends, with R? values included. As observed, accuracy noticeably improves with higher LoA.
Figure 9 shows the correlation between LoA II predictions and experimental results as a
function of effective depth, d, for the four ACI-DAfStb databases. No significant trend against
d is observed, confirming the appropriateness of the size effect factor.

It is worth noting that while the partial safety factor for concrete shear contribution is defined
per Eurocode 2 (2™ generation) [67], this factor depends on the specific performance of the
design model, as well as the uncertainties of its variables, so the direct interpolation to
different models is, in general, not possible. Therefore, further reliability analyses are needed
to calibrate the safety format of the presented LoAs for design purposes. As previously
discussed, different shear mechanical models should be viewed as complementary rather than
contradictory. For instance, for members with moderate or high amounts of shear
reinforcement, variable-angle truss models based on plasticity offer a quick and practical
design approach, particularly when torsion is present. For such members, a practical approach
is to determine the maximum shear strength using either the models presented in this paper or
variable-angle truss models based on plasticity, such as those included in the Eurocodes

[67,68].
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The LoA II (CCCM) incorporates the effect of axial tensile forces via Eq. (18d). To evaluate
its predictive accuracy, two databases were analyzed. The first, from [69], includes 34
rectangular beams (a/d= 1.5-5.6) and 14 T-beams (a/d= 2.0). The second, from [70] contains
23 beams, some subjected to high axial tensile loads. Notably, Eurocode 2 predicts zero shear
strength for 12 tests in this latter set, as noted in [60]. For the CCCM computations, the
extension for non-slender beams presented in Section 8.1 has also been considered for beams
with a/d <2.5.

Figure 10 illustrates the View/Vyrea correlations. For the first database (black and white circles),
LoA II yields a mean ratio of 1.24 with a CoV of 21.1%. For the second (red circles), the mean
ratio is 1.32 with a CoV of 13.8%. While these results are promising, it is crucial to note that
under strong axial loads, Ve, min (Eq. (15b)) governs the prediction, as x/d may reduce to zero,
rendering V., (Eq. (15a)) negligible. In such cases, the strong catenary effect could have had a
significant impact on the shear strength, but this effect is outside the scope of this compact

model. Careful application is advised in these scenarios.
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Figure 10. Correlation between LoA Il predictions and experimental results as a function of
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8. Model extensions

The following subsections present the key extensions developed by the authors. Each
extension is summarized, followed by a brief comparison with the relevant databases for each
case. For simplicity and computational efficiency, most extensions are based on LoA II, the

Compression Chord Capacity Model.

8.1  Non-Slender Beams with and without stirrups
The shear strength of non-slender reinforced concrete beams, where a/d < 2.5, is enhanced due
to arching action, as Kani [71] already showed in 1964. Existing shear design methods for
such elements, including the strut-and-tie method (STM), show deviations from test results.
The LoA II (CCCM), originally developed for slender beams, has been extended to non-
slender beams. This extension incorporates the effects of non-planar strain distribution, the
multi-compression stress state near the applied load, and the pre-determined position and
inclination of the critical shear crack. The main equations for the extension are presented in
Table 5 and Figure 11, with the full derivation provided in [39]. For any parameter or factor
not listed in Table 5, the corresponding value from the CCCM (Table 2) should be used. This
includes the relative neutral axis depth, x/d, for slender-beams.
The concrete contribution to shear strength is given by Eq. (30), which uses the shear strength
for slender beams (dependent on x/d), multiplied by K.q, a factor that accounts for the ratio

between shear strengths in non-slender and slender beams (see Eq. 35).

To compute the contribution of the reinforcement to the shear strength, the relative neutral axis
depth for non-slender beams must be determined. To account for the increase in neutral axis
depth, a parabolic variation of x is assumed between a/d =2.5 (x;=x, B-region) and a/d=0

(x;=d), as seen in Eq. (36).

In non-slender beams, the critical shear crack develops straight and connecting the inner faces
of the load to the support pads [72], with an inclination given by the shear-span-to-depth ratio,

a/d, as seen in Eq. (37).



The web reinforcement contribution (Eq. 32) includes both vertical (stirrups) and horizontal

reinforcement along the web. It is important to note that, in general, these reinforcements may

not yield, and their stress contributions are considered using Egs. (38a) and (38b).

Table 5. Summary of the equations extended for non-slender beams.

Main expressions

Shear strength Ve = Veu + Veu < Vrmax (30)
X
Concrete contribution Vau=1¢ EKad %bv,e rrd 3D
v
Web reinforcement contribution Veu = Vewy + Vowx (32)
. . _ Aswy
Vertical web reinforcement Vowy = (d — x1) cot 8 agyq (33)
X
. . ASW.X'
Horizontal web reinforcement Vowx = 0.5 S (d — x1) tan € ggyxq (34)
y
Factors Expressions
Factor considering strength increase _ _a,
in non-slender beams Kea =1+(25 d) (35)
- ] X, X X a,
Relative neutral axis depth —=-4+(1--)(1-04-)°<1 (36)
d d d d
a
Critical crack inclination cotf = 7 > 0.5 (37)
fet Kaa % 3
= —cot’0 <
Stress at vertical and horizontal web  S*Y qa = fywa (382)
inf t K x
reinforcemen oy = fet Kaa X1 cotd < fya (38b)
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Figure 11. Graphical summary of the extension for non-slender beams.

To experimentally validate the proposed model for non-slender beams, the derived equations

were used to predict the results of 486 tests. The datasets used for verification include: 222

tests on beams without web reinforcement [73], 178 tests on beams with vertical web

reinforcement [74], and 86 tests on beams with horizontal and vertical web reinforcement [75].



The results are summarized in Table 6. Although some scatter is observed for RC beams

without stirrups, the performance compares favorably to code procedures, as detailed in [39].

Table 6. Comparison of tests results vs. predictions for non-slender beams.

# LoA Tl
Database Mean CoV
RC beams w/o stirrups 222 1.47  29.5%
RC beams with vertical stirrups 178 1.19 19.4%

RC beams with vertical stirrups and

0,
longitudinal web reinforcement 86 137 22.1%

One fundamental contribution of the extension for non-slender beams is that it presents
smooth continuity with LoA II for slender beams. This continuity is illustrated in Figure 12,
which depicts results from Kani’s renowned series of tests [23]. In these tests, key beam
properties s—such as width (154 mm), depth (610 mm), effective depth (539 mm),
longitudinal reinforcement (p = 2.77 %, f, =371.9 MPa), concrete and maximum aggregate
size —were held relatively constant, while the shear-span-to-depth ratio, a/d, varied between 1
and 9. Because the beams were heavily reinforced longitudinally, flexural failures at midspan
did not occur until a/d reached approximately 9 (beam 68 in Figure 12). The predictions for
slender beams by LoA II (CCCM) are shown in red, while those for non-slender beams

(a/d <2.5) in blue. The figure highlights the satisfactory predictions and the consistency

across both slender and non-slender beam cases.
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Figure 12. Predicted and observed strengths for Kani’s RC beams [23].



8.2  Beams internally reinforced with FRP bars
For RC members reinforced internally with FRP bars—either longitudinal reinforcement alone
or in combination with transverse FRP bars—crack widths tend to be larger than in beams
reinforced with conventional steel bars [76]. This is due to the lower modulus of elasticity of
FRP, which reduces aggregate interlock and increases the importance of shear transfer through
the uncracked concrete chord. Notably, the development of MASM/CCCM models originated

from this specific case [32,33].

For coherence with our other works, in this paper we propose using LoA I, i.e., the
Compression Chord Capacity Model (Table 2), to also address this scenario. The modular
ratio, a., should be computed considering the modulus of elasticity of the FRP bars.
Additionally, note that Eq. (15b), which defines V. .i» is not applicable for RC beams
reinforced internally with non-prestressed FRP bars. This equation assumed a significant
contribution from shear transfer across the critical crack, v, which is less relevant in this

context due to the material properties of FRP.

The contribution of the transversal FRP reinforcement, Vy,,, is obtained using Eq. (16) but

replacing the term f,..« by o, as defined in Eq. (39). This value accounts for two effects: 1) the
tensile stress in FRP stirrups failing in the bent zone is assumed to be 45% of the ultimate
strength of the straight portion of the bar, which corresponds to a mean value of the strength of
the bent portion of the bar according to JSCE-97 [77] and ACI440.1R-15 [78] considering
different ratios of the bent radius with respect to the bar diameter; and 2) o; represents the
average stress of all stirrups crossing the critical crack, approximated as half of the stress in
the most highly stressed stirrup.

o, = 0.225 - fry (39)



Table 7. Comparison of tests results vs. predictions for beams with only FRP rebars.

# LoA II
Database (or sub-database) Mean CoV
RC beams w/o stirrups 144 1.32 17.0%
RC beams with FRP stirrups 112 1.37 24.3%
PC beams with FRP tendons 55 113 25.8%

(with and w/o FRP stirrups)

The LoA II model has been also extended for PC beams with FRP prestressing tendons, with
and without FRP shear reinforcement [45]. The modifications described above for RC beams
with FRP bars are applicable for this case, except that V. ..x (Eq. 15b) is applicable in the case
of PC beams with FRP prestressing tendons, as the prestressing action enhances the shear
transfer across the critical crack. An additional particularity of beams with FRP tendons is
that, as evidenced by experimental tests [79], they can potentially fail due to excessive slip of
the tendon at the critical crack (shear-bond failure), owing to bond characteristics that are in
many cases inferior to those of steel tendons. This type of failure will occur if the available
bond length between the critical shear crack and the free end of the beam (l,,,) is lower than

the length required to develop the tensile force of the FRP tendon at the critical crack (ly¢q).
Bond failure initiation will reduce the prestressing force and, as a result, the shear strength.
This will also displace the position of the critical shear crack closer to the support. When
lay < lyeq, an iterative procedure is needed to calculate the reduced value of the prestressing
force P that will satisfy [, = l;.¢4 at the shear-bond failure. The available length [, is the

sum of the beam offset measured from the center of the support (e) and the position of the

critical crack (s. = %), while 1,4 is obtained by enforcing equilibrium along the bonded
R
length and at the critical shear crack section [45]:

E,.
lreq = ﬁfnax (40)

Mgy +0.85V,d+0.2125V y,d
zZ

E, 41

where u is the nominal perimeter of the tendon, ,,,, is the bond strength of the tendon, and F,

is the tensile force of the tendon at the critical crack.



A database of 55 tests has been used to assess the accuracy of the model extension for PC
beams with FRP prestressing tendons. Most of the tests are on slender beams, but some non-
slender elements (a/d<2.5) are also included in the database. Among the non-slender beams,
there are beams without shear reinforcement which fail in shear in the absence of flexural
cracking, due to the prestressing action. The correction factor for non-slender beams K,
described in Eq. (35) was derived for the CCCM, and it is specific for beams cracked in
flexure. An analogous correction factor K, ,, accounting for non-slender effects is proposed to
modify the shear strength of uncracked beams Vp4 obtained with Eq. (29). The term K4, was

derived in [45] based on an idealization of the arch and beam actions in non-slender uncracked

beams:
a
Kagu =1+2(1-045) 21 (42)

The results of the model estimations for PC beams with FRP reinforcement are summarized in
Table 6. As shown, the scatter of the results for PC beams is slightly higher than that for RC
beams, consistent with trends observed for steel reinforcement. Notably, the model extension
accounting for potential tendon slip is capable of predicting three out of the five shear-bond
failures reported in the tests by [79], with the mean experimental-to-predicted strength ratio of

1.05 for these five tests and only one unsafe prediction (ratio < 1).

8.3 Steel Fiber Reinforced Concrete (SFRC) slender and non-slender beams
without stirrups
The extension of the proposed model to slender and non-slender SFRC beams [40] was
developed in collaboration with researchers from the University of Messina (Italy). The
incorporation of steel fibers into concrete mixtures enhances shear behavior by delaying crack
formation and improving the post-cracking tensile response. These enhanced mechanical
properties significantly increase the shear strength of RC beams, as supported by numerous

experimental studies [80—82].



The contribution of steel fibers was integrated into the equilibrium equations of the Multi-
Action Shear Model (MASM). The residual tensile stresses of fiber reinforced concrete were
addressed through a simplified formulation, which allowed the model to account for an
improved compression chord contribution, direct shear transfer through the fiber-bridging
effect along the critical shear crack, and enhanced dowel action provided by the fibers.
Although these effects were initially modeled at the MASM level, the final expressions were
compactly reformulated in [40], resulting in a practical LoA II procedure. The main equations
for this extension are summarized in Table 8 and Figure 13, offering a straightforward
approach for designers while maintaining accuracy in predicting the shear strength of SFRC
beams, both for slender and non-slender beams.

For non-slender SFRC beams, the K, factor in Eq. (43), given by Eq. (35), adjusts the shear
strength to account for arching action. Additionally, the concrete contribution is expressed as
proportional to the relative neutral axis depth of an equivalent beam made with conventional

concrete (Eq. (42)).

Table 8. Summary of the LoA I for beams with Steel Fiber Reinforced Concrete without stirrups.

Main expressions

. . X [ oyl f
Concrete contribution Vo = [(EKad (0.84 ~0.10 ﬁ) +0.08 + 1.10 ﬁ] et ey (43)
Maximum shear strength cotf
Girotorushing) Veamax = GowbuwVifoa Trngzg ~ 0-225fcabud (44)
Factors Expressions
1/3
Relative neutral axis depth g = %0 = AePrp (—1 + ’1 + “ef’lb) ~ 0-75(0’3P1,b) / 45)
No.n—d1men51.onal average Oty _ 2nemE < 1 (46)
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Figure 13. Graphical summary of the extension for SFRC beams without stirrups.




The non-dimensional average residual tensile stress of fibrous concrete in tension, gy, is
derived from the constitutive law proposed by Lim et al. [83] and is summarized in Eq. (46).
Detailed definitions of the involved parameters are provided in the Notations section, while

further derivations and explanations can be found in [40].

To validate this model, a database compiled by Lantsoght [80,84] was utilized. The structural
parameters in the database vary over a wide range; however, the mechanical characterization
of SFRC was not reported. Nevertheless, when experimental results for the post-cracking
tensile stress of SFRC are available, they are often obtained using different experimental
protocols, making homogenization of the data challenging [80]. Practical values of the fiber
volume fraction (V%) are used (0.5-1.5%), which result in workable mixes and serve the

purpose of partially replacing conventional steel reinforcement.

Table 9 summarizes the correlation between experimental and predicted shear strengths for the
entire database and specific subsets. The correlations are satisfactory, and they can be

compared with those of different code procedures detailed in [40].

Table 9. Comparison of tests results vs. Lantsoght database [80,84].

# LoA Il
Database or subset Nean CoV
All beams 488 1.17 23.8%
Only beams failing in shear according to the 324 1.18 24.7%
model (flexural check)
Failing in shear with a/d > 2.5 223 1.15 25.6%
Failing in shear with a/d <2.5 101 1.24 22.5%

8.4 RC beams without stirrups subjected to fatigue loads
Shear fatigue failures in reinforced concrete elements without shear reinforcement can govern
the design of structures subjected to a high number of load cycles, such as wind towers, offshore

structures, bridge decks, precast slabs for railways tracks, and similar applications.

The study of shear fatigue behavior in RC elements without shear reinforcement has a long
history, and the associated failure modes are well understood. In 1958, Chang and Kesler [85,86]
classified these failure modes into two main groups: the first involves fatigue failure of the

longitudinal reinforcement under tension, while the second occurs when the compression zone



at the top of the diagonal (shear) crack becomes too small to resist the applied load, due to

combined compression and shear stresses.

The MASM/CCCM models define failure using Kupfer’s envelope, which considers a
combination of compressive and tensile stresses, although tensile stresses primarily govern. As
such, the concrete contribution to shear resistance is consistently expressed as a function of the
concrete tensile strength in all proposed models (see Egs. (2), (15), (23), (31), and (43)). This
was the foundational assumption for extending the CCCM model (LoA II) to RC beams without

stirrups subjected to fatigue loads [41].

Different approaches were employed to account for the reduction of the shear strength under
fatigue loading. In the first one, the Model Code 2010 [87] expression for the degradation of
concrete tensile strength due to the number of load cycles, N, was used. This relationship is

expressed as shown in Eq. (47):

log N
Octmax = fct (1 - Olgz ) (47)

An alternative approach, based on Fernandez-Ruiz et al. [88], applied Fracture Mechanics
principles for quasi-brittle materials. This model considers the ratio of maximum to reference
shear strength, V,../Vses, as a function of the load cycle ratio, R = Viin/Vinar, and the number of

load cycles, N, as expressed in Eq. (48):

et = ——5—— £ 0.5 (48)
ref R+Nm(1-R)

In this equation, m is an empirically derived coefficient equal to 17, and the threshold of 0.5
also refer to the average test response. The authors [88] recognized that these values could be
adapted, if necessary, to respect a target safety level. The term 7 is a multiplying factor of
static strength due to the loading rate, considered equal to 1 in [41] and in this paper, balancing
two considerations: the implicit value of 0.9 suggested by Eurocode 2 [68] to reflect long-term
effects on compressive strength, and the value of 1.1 proposed by Fernandez-Ruiz et al. [88] to

account for the increased concrete compressive strength observed in tests conducted at a



loading rate of 1 Hz compared to failure times of approximately 1 hour in standard beam tests.

Further details on this topic can be found in [41].

For facilitating the comparison with tests results, Eq. (48) can be reformulated in terms of

Vinin/ Vrer (see Eq. 49):

Vmax _ -1/m 4 Vmin —N~1/m
YRk = N T o et (1-N"Ym) <05 (49)

A database of fatigue tests on shear-critical beams, comprising 87 tests, was used to validate
both approaches. This database, originally developed in [89], was later expanded and

published in [88]. The primary results are summarized in Table 10.

The second method, which accounts for the load cycle ratio, R, provides slightly better and
more consistent results across the entire range of log N values analysed (see Figure 14).
Nevertheless, the differences between the two methods are minimal. Further empirical

comparisons, presented in terms of Goodman diagrams, are available in [41].

Table 10. Comparison of tests results vs. fatigue tests results.

# LoA Tl
Method Mean CoV
LoA II with Eq (47) 87 1.15 14.6%
LoA II with Egs. (48-49) 87 1.19 13.3%
3.0 T T T T T 3.0 T T T
Fatigue tests on Fatigue tests on
RC beams without stirrups RC beams without stirrups
25 25
2.0 2.0
hel hel
o o
Q . Q
315 . ' 310 .}
>‘$ .--. . ...- s ." .,. >~E’. - ... o, 2,0 4
1.0 T . 1.0 Paliing
0.5 0.5
- Eq. (47) - Egs. (48-49)
0.0 — 0.0 R
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
log N log N

Figure 14. Correlation between predictions and experimental results for the two approaches

considered for fatigue loads.



9. Conclusions

A unified mechanical model for the shear strength of slender and non-slender reinforced and

prestressed concrete beams has been developed, applicable to beams with rectangular, T-, or I-

shaped sections. Some distinct features of the presented model are:

The model, based on the Multi-Action Shear Model (MASM), effectively integrates
shear transfer actions such as compression chord contribution, residual tensile stresses
across the critical crack, dowel action, and transversal reinforcement effects (if
present).

The Levels-of-Approximation (LoA) framework enables the application of the model
in a wide range of structural design and assessment scenarios, with increasing
complexity from LoA 0 (preliminary design) to LoA III (detailed assessment).
Specifically, LoA III is based on the MASM, and LoA II on the Compression Chord
Capacity Model (CCCM). All LoAs provide continuous models for members with or
without shear reinforcement.

As highlighted in the introductory section of this paper, different mechanical
approaches are valid for addressing the shear failure problem, and various models
should be viewed as complementary rather than contradictory. For instance, for
members with moderate or high amounts of shear reinforcement, variable-angle truss
models based on plasticity offer a quick and practical design approach, particularly
when torsion is present.

The extension of LoA II (CCCM) to cover specific cases, such as the shear strength of
non-slender beams, RC and PC beams reinforced with fiber reinforced polymers
(FRP) bars, steel fiber reinforced concrete (SFRC) members, and fatigue loads for RC
beams without stirrups, has been also presented.

Validation of the model using 2,714 experimental tests from 14 databases has shown
its accuracy and versatility, with improved prediction consistency and reduced scatter

at higher LoAs.



This work contributes a robust tool for the design and assessment of structural concrete
elements, offering a systematic approach that combines advanced mechanics with engineering
practice. Looking ahead, future work will focus on conducting a comprehensive reliability
analysis to assess the sensitivity and robustness of the model under varying conditions,
particularly considering uncertainties in material properties, geometry, and loading. Such an
analysis would be important for calibrating the models to the levels recommended by current
standards and determining the most appropriate safety format, whether through partial safety
factors or a global factor. Further research could also explore the application of the model to
more complex geometries or hybrid materials, such as combinations of steel, FRP, and SFRC.
Additionally, integrating the model into advanced structural design software could greatly

enhance its usability in practical engineering scenarios.
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Notations
a shear span, equal to Mggmax/ Vedmax, Where Megmax and Vg max are the maximum absolute
values of the internal forces in the region between the maximum bending moment and

the zero bending moment in which the considered section is located. This is equivalent



btcns

by, eff

ﬁu
ﬁzwd

hﬁ tens

to the distance from the support to the resultant of the loads producing shear at that
support. Design values for uniformly distributed load, a=0.25L (simple supported);
a=0.5L (cantilever); a=0.2L (sagging moment regions in continuous beams); a=0.15L
(hogging moment regions in continuous members)

cross-section width. For T/I-sections, flexural effective compression flange width
tensile flange width

effective width for shear strength calculation

web width for T/I/L beams; for rectangular beams b,,= b

effective depth, d = Asds+Apdp
Ast+Ap
minimum effective depth for size effect factor, dp=d > 100 mm

fiber diameter

maximum aggregate size

distance from maximum compressed concrete fiber to the centroid of mild steel tensile
reinforcement. For elements with only prestressed reinforcement, ds = d,

distance from maximum compressed concrete fiber to the centroid of prestressing
tendons placed at the tension zone

design compressive strength of concrete

characteristic compressive strength of concrete (for < 100 MPa)

mean compressive strength of concrete

tensile strength of concrete, as per second generation of Eurocode 2 in this paper:

for = feem = 0.3f2/%if < 50 MPa, and fux = fuem = 1.1£° if £ > 50 MPa
ultimate strength of FRP transverse reinforcement

design yield strength of shear reinforcement

overall cross-section depth

compression flange height. For haunched T/I/L beams, flange height + half the haunch

tensile flange height. In T, I or L beams with haunches, /y.s can be considered the

flange height plus half the haunch



Kad,u

available bond length of prestressing tendon between critical shear crack and free end of
the beam

Isyds

critical fiber length, [, = -
f

bond length required to develop the tensile force of prestressing tendon at the critical
crack

stirrups spacing

nominal perimeter of FRP tendon.

neutral axis depth assuming zero concrete tensile strength

neutral axis depth for RC or PC members assuming P = 0

distance from the concrete section centroid to the most tensioned fiber
inner lever arm, approximate value z = (.94 may normally be used
concrete cross-sectional area

prestressing steel (tensile zone) cross-sectional area

mild steel reinforcement (tensile zone) cross-sectional area

shear reinforcement cross-sectional area

secant modulus of elasticity of concrete, E.,,, = kg fcln/f; for concrete with quartzite
aggregates kr = 9500 (value assumed in this paper)
elastic modulus of mild reinforcement (200 GPa)
elastic modulus of prestressing steel (195 GPa, if unspecified)
tensile force of FRP tendon at critical crack.
fiber factor, F; = BTVf;—};

concrete fracture energy, Gy = 0.028/%; 3dp: 2%

second moment of area

factor that accounts for ratio between shear strengths of cracked non-slender and slender
beams

factor that accounts for ratio between shear strengths of uncracked non-slender and
slender beams

strength factor for axial load (including prestressing) and bending moment interaction



Kr  strength factor for T/I-sections relative to rectangular beams

Ly fiber length

MEeq  design bending moment (positive)

Nea  design axial/prestressing force (compression positive)
P prestressing tendon force after losses

Se first moment of area above the centroid

Vew  concrete contribution to the shear strength

Vr  volumetric percentage of fibers

Vi shear FRP reinforcement contribution to the shear strength

Ve shear reinforcement contribution to the shear strength

Vea  design shear force in the section

Vra  design shear resistance of the member

Vramexmaximum design shear resistance limited by strut crushing

a angle between shear reinforcement and beam axis perpendicular to the shear force
0w  coefficient for stress in the struts: a,, = 1 for non-prestressed structures; a,, = 1 +

Ocp/feafor 0 < ooy < 0.25f.4; aeyy, = 1.25 for 0.25f¢4 < 0oy < 0.50f¢4; and a, =

2.5(1 — 0p/feq) for 0.50f 4 < 0cp < fra

.  modular ratio, a, = E/E .,

oy prestressing force transfer degree, which is < 1.0 for pretensioned tendons, and equal to
1.0 for other types of prestressing

B-  ratio of mean fiber-matrix shear stress to tensile strength, B, = t¢/ f;. In the typical

case of concrete matrix, S adopts the value of 1,45 for hooked fibers and 0,70 for

straight fibers. Mean value considered for crimped fibers

9,  angle between prestressed tendon axis and beam axis

% partial factor for concrete shear contribution. According to the 2™ generation of EC2,
= 1,4 for persistent and transient design situation or fatigue. For accidental design
situation 1,15. Necessary to carry out a reliability analysis to confirm these values.

no  fiber orientation factor, 70= 0.405.



fiber length efficiency factor. If Ly < /. = 7, =0.5; otherwise n; = 1 — e

n 2Lf

121 strength reduction factor for concrete cracked in shear, vi = 0.6 for fo: < 60 MPa and v
= 0.9-f+/200 for fr> 60 MPa

0 strut angle with respect beam axis

p» longitudinal tensile reinforcement ratio relative to effective depth d and the width b. For
members with mild steel reinforcement and tendons, a.p;p = desPsp + AepPp,p bEING
@es = Es/Ecm, Ao = Ep/Ecm, psp = As/bd, pp, = Ap/bd and b the width of the
cross-section. For the case of unbonded tendons, 4, = 0.

Piw  same as o but relative to web width b,

o,  concrete compressive stress at the centroid due to axial/prestressing load,o., = Nes/A.
(NEe~0 compression)

oy  steel fiber yield strength

o  mean value of the tensile stresses in the FRP stirrups crossing the shear critical crack

7 mean fiber-matrix shear stress. See definition of S,

Tnar  boONd strength of FRP tendon.

4 combined size and slenderness effect factor (LoAs II and I1I)

" size effect factor for LoA I, equal to {'but assuming a/d = 4
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Appendix A: Derivation of LoA II (CCCM) from LoA III (MASM)

Al. Detailed derivation of the main CCCM equation:
In LoA III (MASM), the general equation for the shear strength is given as:

Vea = Veu + Vs —(UC+UW+17[)% b-d+ Vg

v

Substituting the detailed components:

b
+mei"fﬁg+mfmﬁg%d+m

v

b
Via = ({[(0.70 +0.18K; + (0.20 + o.sob—) vs)g

For simplification, we assume Kr = I, Kp = 1, and adopt safe average values of v,,= 0.035 and

=0.025. Substituting these values:

b x b
Vra = {( [(0.88 + (0.20 + o.sob—) vs) -+ 0.02] %ff +0.035 + 0.025}&bd + Ve

w }/1]

To further simplify, the terms v, = 0.035 and the constant 0.02 are incorporated in the x/d
multiplier, assuming an average z/d = 0.35. Similarly, v;=0.025 is added to the v factor, with
an average v,=0.25. For simplifying reasons, when introducing these constant values inside the

veff

parenthesis, the terms —— and { have been considered equal to 1:

0.02 0.035

. 0.025 b mieff) fot
= 88+ —— + —— +(0.20 + —— 050—) ) ] }—bd =
Vra {( [(088+0.35+ 0.35 ( 0.35- 0.25 b))l b Sy, P4 Ve

Q

={Z [(1.04+<0.49+0.50£)v>d] ”eff}&bd+ Vou

by, b Jy,
~(;b”;ffﬁtbd+05((1+bi) = ”;ff]]}:der e =
~ (g%b,,effd+05((1+ b )ffzdg%%bd+vsu _
Yo
— ot e 1+ 05 (14 20) 322 = 2 vt + )



The term Ay, = 0.5¢ (1 + b ) Z ”;f L considers the increase in the concrete contribution to

the shear strength due to the confinement caused by the stirrups to the compression chord

concrete. An average value Ay, = 0.4 is adopted to simplify the calculation procedure:

v _oila

37, bresrd + 1.4V,

A2. Detailed derivation of the V, ui» expression

For some cases, v, is an important shear contribution and the value adopted in A1 (v,,=0.035)
is too conservative. This may happen for members, especially one-way slabs, with low values
of d or low values of x/d (assumed x/d < 0.2 in the following). It has been considered that

there is no shear reinforcement:

f
ch,min = (Uc + Uw) yL:bd:

x b
= {( [(0.70 +0.18Kp) = + o.ozKT] ”';ff K, +v }&bd _

Assuming Kr = 1, Kp = 1, and substituting E., and Gy for a 25 MPa compressive strength

concrete:

b, eff fet bw 2 Gf fCt
V. = 0. 88 0.02 167 —— |1+ —7——
cu,min {( [ + ] b + E.n b * f ctm’ do )/1;

x b b 1206
~ {( 0.88= +0.02] 2L+ 0.015—‘”(1 + )}&bd =

d b b d )7,
x 1206\) .t

~1¢ [0.88— + o.oz] byess +0.015b,, (1 + ety =
d 0 Yv

For simplicity, and from the safe side, we assume by, o ¢ =by, -

—b,d =

Vv

1206
Vewmin = {z [0.882 +0.02] +0.015 (1 )}f ct

0

{5088 +0.02¢ + 0.015 + }f“

b,,d =~
d dy w



This expression is intended for the cases in which v. is small compared to v,,. For this reason,
x/d will be assumed to be equal to 0.2. Moreover, for further simplicity, the terms 0.02¢ and

0.015 are disregarded:

100

18) f-
Veumin = {60176 + 2}/ b, d ~ 018{¢ + 2

fet
=b,d
} w v
A3. Simplification of the expression for maximum shear strength, V.gmax
For the maximum shear strength given by the concrete strut capacity, assuming a., = 1 (no axial

force), z = 0.9d, v; = 0.6 (conventional concrete), and cotd= 1.85 (average value between

reinforced and prestressed concrete beams according to the databases):

cotf ,
VRd,max = acwbevlfcdm =1 bw -0.9d - 06fcdm = 0225fcdbwd

Appendix B: Derivation of LoA I from LoA II (CCCM)

B1. Simplification of the concrete contribution
From Loa II (CCCM):

x f;
Veu = (a%bv,effd
v

The size effect, assuming a/d = 4, becomes:

0.2

= 2 (1) 1.5
dy o

1+ 300 1+ 300
Assuming now rectangular cross-section (byey = bw), §=0.75(aepl)1/ 3 and a,=6.0

(corresponding to f.x = 35 MPa):

/xf 1 f 7] ft
Vou = §' 57 buerrd = &' 075(6 - p)V = byeryd = 13500, by

v

B2. Detailed simplification of the shear reinforcement contribution:

0.85d, A, Ag,
do—x s Dwa ™ 1207 fywa

A
Voy = 1.4(ds — x) cot@%fywd = 1.4(d, — x)



